
Midterm Exam Study Guide

CSE 30151 Spring 2024

Exam date: 2023/03/05 at 2pm

The cover page of the exam will look like this.

Name:

NetID:

• This exam has six questions, worth 15 points each, for a total of 90 points
(15% of your grade).

• You have the whole class period of 75 minutes to write your solutions.

• You may use your textbook and paper notes, but computers, smartphones,
and tablets are not allowed.

• You may use the textbook, lectures, and lecture notes for this course without
citation. However, you may not copy or quote from any other materials in
your notes that you are not the author of.

• On this page, please write your name and NetID, but please don’t write any
solutions. On the remaining pages, front and back, please write your solutions,
but please don’t write your name.

1



Theory of Computing (CSE 30151), Spring 2024

Problems

The exam covers everything about regular languages, non-regular languages, and
context-free languages. It does not cover non-context-free languages. The six ques-
tions will be of the following types. (Exercise/problem numbers are from Sipser; an I

means 3rd international edition and a U means 3rd US edition.)

• Design: Two questions.

– Show that a language is regular, by writing a DFA, NFA, or regular
expression for it (Exercise 1.4–7, 1.18).

– Show that a language is context-free, by writing a CFG or PDA for it
(Exercise 2.4ad, 2.6ac, 2.7ac but actually write the PDA).

• Constructions: Two of the following types of questions.

– Convert a NFA to a DFA (Exercise 1.16).

– Convert a regular expression to a NFA (Exercise 1.28).

– Convert a NFA to a regular expression (Exercise 1.21).

– Convert a CFG to a PDA (Exercise 2.11–12).

– Convert a PDA to a CFG. You will not be asked to write out all the rules
of the form Apq → Apr Arq. For a sample question, convert the PDA in
Example 2.18 and see below for the solution.

• Proofs: Two of the following types of questions.

– Prove that regular languages are closed under some operation (Exercise
1.31U/1.36I, Problem 1.43U/1.33I, 1.40aU/1.45aI, 1.66aU/1.60aI).

– Prove that two variations on finite automata or regular expressions are
equivalent (Exercise 1.11).

– Prove that a language is non-regular (Problem 1.29ac, 1.46bU/1.51bI).

– Prove that CFLs are closed under some operation (Exercise 2.16, Problem
2.25U/2.37I).

– Prove that two variations on CFGs or PDAs are equivalent. Sample ques-
tion: Define an e-PDA to be a PDA that does not have accept states;
instead, it accepts a string if and only if it can reach the end of the string
with an empty stack. Prove that PDAs and e-PDAs recognize the same
languages.

2



Theory of Computing (CSE 30151), Spring 2024

Solutions to Selected Exercises

Exercise 1.18

1. 1Σ∗0

2. Σ∗1Σ∗1Σ∗1Σ∗

3. Σ∗0101Σ∗

4. ΣΣ0Σ∗

5. (0 ∪ 1Σ)(ΣΣ)∗

6. 0∗(100∗)∗1∗

7. (Σ ∪ ε)(Σ ∪ ε)(Σ ∪ ε)(Σ ∪ ε)(Σ ∪ ε)

8. Σ∗0Σ∗ ∪ ε ∪ 1 ∪ 11111∗

9. (1Σ)∗(1 ∪ ε)

10. 0∗(00 ∪ 100 ∪ 010 ∪ 001)0∗

11. ε ∪ 0

12. 1∗(01∗01∗)∗ ∪ 0∗10∗10∗

13. ∅
14. ΣΣ∗

Problem 1.43U/1.33I For any regular language L, let M = (Q,Σ, δ, s, F ) be a
DFA that recognizes L. Construct a new NFA N :

• For every state q ∈ Q, create states q and q̂. (Assume that Q does not
contain any states whose names have hats, like q̂.)

• The start state is s.

• The accept states are {q̂ | q ∈ F}.
• For every transition in M :

q r
a

create three transitions in N :

q r
a

q̂ r̂
a

ε

N reads the first part of the string (x) simulating M using the states without
hats, i.e., q, r. Then, at some point, it follows a transition from q to r̂, reading
nothing but simulating the reading of symbol a. Then it reads the rest of the
string (z) simulating M using the states with hats, i.e., q̂, r̂.

3



Theory of Computing (CSE 30151), Spring 2024

Example 2.18 The ε, ε → ε transition first has to be broken up into two transi-
tions:

q1 q2 q5 q3 q4
ε, ε → $ ε, ε → # ε, # → ε ε, $ → ε

0, ε → 0

1, ε → 1

0, 0 → ε
1, 1 → ε

The start symbol is Aq1q4 , and the rules are:

Aq1q4 → Aq2q3

Aq2q3 → 0Aq2q30

Aq2q3 → 1Aq2q31

Aq2q3 → Aq5q5

Aq1q1 → ε

Aq2q2 → ε

Aq3q3 → ε

Aq4q4 → ε

Aq5q5 → ε

as well as all rules of the form Apq → AprArq for p, q, r ∈ {q1, q2, q3, q4, q5}.

Problem 2.25U/2.37I For any context-free language L, let P = (Q,Σ,Γ, δ, s, F )
be a PDA that recognizes L. Construct a new PDA P ′:

• For every state q ∈ Q, create states q and q̂. (Assume that Q does not
contain any states whose names have hats, like q̂.)

• The start state is s.

• The accept states are {q̂ | q ∈ F}.
• For every state q ∈ Q, create the transition

q q̂
ε, ε → ε

• For every transition in P :

q r
a, x → y

create two transitions in P ′:

4



Theory of Computing (CSE 30151), Spring 2024

q r
ε, x → y

q̂ r̂
a, x → y

Initially, P ′ simulates P using the states without hats, i.e., q, r, reading nothing
but simulating the reading of some string u. Then, at some point, it follows a
transition from q to q̂ and continues to simulate P using the states with hats,
i.e., q̂, r̂, and actually reading the string (v).

Equivalence of PDAs and e-PDAs Given a PDA P , we can convert it to an
equivalent e-PDA as follows. Create the following state and transitions, whose
job is to empty the stack completely:

e

ε, x → ε for all x ∈ Γ

Then for every accept state f , add a transition

f e
ε, ε → ε

Given an e-PDA P with start state s, we can convert it to an equivalent PDA
as follows. Create a new start state s′ and transition:

s′ s
ε, ε → $

where we assume $ is a new stack symbol not used by P . Then create a new
accept state f and, for every state q, create a transition that lets the PDA go
to the accept state if the stack is empty save for $:

q f
ε, $ → ε

5


