Homework 1: Strings and Languages

Theory of Computing (CSE 30151), Spring 2025

Due: 2025-01-24 5pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
 - If you're making a complete submission, name it netid-hw1.pdf, where netid is replaced with your NetID.
 - If you're submitting some problems now and want to submit other problems later, name it *netid-hw1-part123.pdf*, where 123 is replaced with the problem number(s) you are submitting at this time.
- Submit your PDF file(s) in Canvas under HW1.

Problems (10 points each)

1. Proof practice.

(a) Convert this paragraph proof to a statement-reason proof. Please be sure to write which statement(s) each statement depends on.

To show: If s is a string, every substring of a substring of s is a substring of s.

Proof: Let y be a substring of s, that is, s = xyz for some x, z; and let v be a substring of y, that is, y = uvw for some u, w. Then s = xuvwz, so v is a substring of s.

(b) Convert this statement-reason proof to a paragraph proof.

To show: If w is a string, every prefix of a suffix of w is a suffix of a prefix of w.

1. v is a suffix of w	Given
2. y is a prefix of v	Given
3. $\exists x \text{ s.t. } xv = w$	(1), def. suffix
4. $\exists z \text{ s.t. } yz = v$	(2), def. prefix
5. $xyz = w$	(3), (4), substitution
6. xy is a prefix of w	(5), def. prefix
7. y is a suffix of xy	(6), def. suffix

2. String homomorphisms. If Σ and Γ are finite alphabets, define a *string* homomorphism to be a function $f: \Sigma^* \to \Gamma^*$ that has the property that for any $u, v \in \Sigma^*$,

$$f(uv) = f(u) f(v).$$

An example of a string homomorphism is the function that converts hexadecimal numbers into binary numbers, which operates digit-by-digit:

$$\begin{split} f_{\rm hb} \colon \{0,\ldots,9,{\tt A},\ldots,{\tt F}\}^* &\to \{0,1\}^* \\ f_{\rm hb}(\varepsilon) &= \varepsilon \\ f_{\rm hb}(1) &= 0001 \\ f_{\rm hb}({\tt A}) &= 1010 \\ f_{\rm hb}({\tt IA1A}) &= 0001101000011010. \end{split}$$

Prove that for any string homomorphism f (not just the example $f_{\rm hb}$), then for any string $w = w_1 \cdots w_n$ (where $n \ge 0$ and, for $j = 1, \dots, n, w_j \in \Sigma$), we have

$$f(w) = f(w_1) \cdots f(w_n). \tag{*}$$

Use induction on n.

- (a) State and prove the base case, that is, (*) for n = 0.
- (b) Assume that (*) is true for n = i and prove (*) for n = i + 1.

You may assume the following facts about strings:

- Identity: For all $x \in \Sigma^*$, $x\varepsilon = x$ and $\varepsilon x = x$.
- Right cancellation: For all $x, y, z \in \Sigma^*$, if xz = yz then x = y.
- Left cancellation: For all $x, y, z \in \Sigma^*$, if xy = xz then y = z.
- 3. Finite and cofinite. Let $\Sigma = \{a, b\}$. Define FINITE to be the set of all finite languages over Σ , and let coFINITE be the set of all languages over Σ whose *complement* is finite:

$$\mathsf{coFINITE} = \{ L \subseteq \Sigma^* \mid \overline{L} \in \mathsf{FINITE} \}$$

(where $\overline{L} = \Sigma^* \setminus L$). For example, Σ^* is in coFINITE because its complement is \emptyset , which is finite. (Please think carefully about this definition, and note that coFINITE isn't the same thing as $\overline{\text{FINITE}}$.)

- (a) If $L \in \mathsf{FINITE}$, what data structure could you use to represent L, and given a string w, how would you decide whether $w \in L$?
- (b) If $L \in \text{coFINITE}$, what data structure could you use to represent L, and given a string w, how would you decide whether $w \in L$?
- (c) Are there any languages in $\mathsf{FINITE}\cap\mathsf{coFINITE}?$ Prove your answer.
- (d) Are there any languages over Σ that are *not* in FINITE \cup coFINITE? Prove your answer.

You may assume the following fact about sets:

• The union of two finite sets is finite.