Homework 1: Strings and languages

CSE 30151 Fall 2020

Due: 2020/08/21 5:00pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
 - If you're making a complete submission, name it netid-hw1.pdf, where netid is replaced with your NetID.
 - If you're submitting some problems now and want to submit other problems later, name it *netid-hw1-123.pdf*, where 123 is replaced with the problem numbers you are submitting at this time.
- Submit your PDF file(s) in Sakai. Don't forget to click the Submit button!

Problems (10 points each)

1. Proof practice.

(a) Convert this paragraph proof to a statement-reason proof. Please be sure to write which statement(s) each statement depends on.

To show: If s is a string, every substring of a substring of s is a substring of s.

Proof: Let y be a substring of s, that is, s = xyz for some x, z; and let v be a substring of y, that is, y = uvw for some u, w. Then s = xuvwz, so v is a substring of s.

(b) Convert this statement-reason proof to a paragraph proof.

To show: If w is a string, every prefix of a suffix of w is a suffix of a prefix of w.

1. v is a suffix of w	Given
2. y is a prefix of v	Given
3. $\exists x \text{ s.t. } xv = w$	(1), def. suffix
4. $\exists z \text{ s.t. } yz = v$	(2), def. prefix
5. $xyz = w$	(3), (4), substitution
6. xy is a prefix of w	(5), def. prefix
7. y is a suffix of xy	(6), def. suffix

~.

2. String homomorphisms. If Σ and Γ are finite alphabets, define a *string* homomorphism to be a function $\phi : \Sigma^* \to \Gamma^*$ that has the property that for any $u, v \in \Sigma^*$, $\phi(uv) = \phi(u)\phi(v)$.

For example, the function $\phi : \{0, \dots, 9, A, \dots, F\}^* \to \{0, 1\}^*$ that converts a hexadecimal number with $n \ge 0$ digits into a binary number with 4n bits is a string homomorphism:

$$\phi(arepsilon) = arepsilon$$

 $\phi(0) = 0000$
 $\phi(A) = 1010$
 $\phi(CAB) = 110010101011$

Intuitively, a string homomorphism does a "search and replace" where each symbol is replaced with a (possibly empty) string. Prove this more formally: that is, prove that if ϕ is a string homomorphism, then for any $w = w_1 \cdots w_n$ (where $n \ge 0$ and $w_j \in \Sigma$ for $1 \le j \le n$), we have

$$\phi(w) = \phi(w_1) \cdots \phi(w_n). \tag{(*)}$$

Use induction on n.

- (a) State and prove the base case (n = 0).
- (b) Assume that (*) is true for n = i and prove (*) for n = i + 1.
- 3. Finite and cofinite. For any alphabet Σ , let FINITE be the set of all finite languages over Σ , and let

$$coFINITE = \{L \mid \overline{L} \in FINITE\}$$

(where, for any language L over Σ , \overline{L} is the complement of L, that is, $\Sigma^* \setminus L$). For example, Σ^* is in coFINITE because its complement is \emptyset , which is finite. (Please think carefully about this definition, and note that coFINITE isn't the same thing as FINITE.)

- (a) Are there any languages over Σ in FINITE \cap coFINITE? Prove your answer.
- (b) Are there any languages over Σ that are *not* in FINITE \cup coFINITE? Prove your answer.