Homework 2: DFAs and NFAs

CSE 30151 Fall 2020

Due 2020/08/28 at 5:00pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
 - If you're making a complete submission, name it *netid-hw2.pdf*, where *netid* is replaced with your NetID.
 - If you're submitting some problems now and want to submit other problems later, name it *netid-hw2-123.pdf*, where 123 is replaced with the problem numbers you are submitting at this time.
- Submit your PDF file(s) in Sakai. Don't forget to click the Submit button!

Problems (10 points each)

1. Designing finite automata Define, for all k > 0,

 $D_k = \{w \in \{0, \dots, 9\}^* \mid w \text{ is the decimal representation of a multiple of } k\},\$

where ε is considered to represent the number 0. For example, the strings ε , 0, 88, and 088 all belong to D_2 .

- (a) Write a DFA for D_2 .
- (b) Write a DFA for D_3 .
- (c) Prove that for any k > 0, D_k is regular, by describing how to write the formal description of a DFA $M = (Q, \{0, \ldots, 9\}, \delta, s, F)$ in terms of k. Hint: appending a digit d to a number x is equivalent to doing $x \leftarrow 10x+d$.

2. Nondeterminism Consider the following language:

 $L_2 = \{uv \mid u, v \in \{a, b\}^*, u \text{ contains an even number of } a's, \text{ and} \\ v \text{ contains an even number of } b's\}$

Note that as long as there is *some* way of cutting a string into u and v so as to satisfy the constraints, it's in L_2 . So $ba \in L_2$, because u = b has an even number (0) of a's and v = a has an even number (0) of b's.

- (a) Write an NFA N_2 that recognizes L_2 .
- (b) What is the accepting path for babⁿ through N₂? You can show the path for bab, babbb, babbb, ... until the pattern is clear, or describe the general case. Either way, please write a few words about what you observe.
- (c) Convert N_2 to a DFA M_2 using the subset construction (Theorem 1.39).
- (d) What is the accepting path for bab^n through M_2 ? Again, you can show the path for $bab, babb, babbb, \ldots$ until the pattern is clear, or describe the general case. Either way, please write a few words about what you observe.
- 3. **Regular/raluger** In the following, we'll use the language L_3 as an example (but the results must be proved for all L):

$$L_3 = \{ \texttt{deed}, \texttt{deer}, \texttt{red}, \texttt{redder}, \texttt{reed} \}.$$

(a) Recall that

$$L^R = \{ w \mid w^R \in L \}.$$

For example, $L_3^R = \{ \text{deed}, \text{reed}, \text{der}, \text{redder}, \text{deer} \}$. Prove that if L is regular, then L^R is also regular.

(b) Define

$$DOPPELGANGERS(L) = \{ w \mid w \in L \text{ and } w \in L^R \}.$$

For example, DOPPELGANGERS $(L_3) = \{ \text{deed}, \text{reed}, \text{deer}, \text{redder} \}$. Prove that if L is regular, then DOPPELGANGERS(L) is also regular.

(c) (Optional, not for credit) Define

$$HALF(L) = \{ w \mid ww^R \in L \}.$$

For example, $HALF(L_3) = \{ de, red \}$. Prove that if L is regular, then HALF(L) is also regular.