
Chapter 1

Introduction

1.1 Questions

A theory of neural networks should explain how neural networks work, in such
a way that lets us make predictions about howwell they work in what situations.
Investigation of this question is often divided into three subquestions: expressiv-
ity, optimization, and generalization.

A neural network, like just about any other model in machine learning, is
some function 𝑓 (x;𝜃 ) where x is the input and 𝜃 contains the parameters to
be learned. We want to train 𝑓 on example inputs and outputs from some true
function 𝑓 ∗ (x).

Expressivity asks whether the family of functions 𝑓 (x;𝜃 ) for all 𝜃 includes 𝑓 ∗,
or how close 𝑓 can possibly get to 𝑓 ∗ (in which case this could be called approx-
imation, which has the advantage of rhyming with the other two). Let 𝜃 ∗ be the
setting of 𝜃 that gets the closest.

Optimization asks whether the procedure we use for training 𝑓 from some
initial 𝜃 , on unlimited data, can reach 𝜃 ∗, or whether it can fall short and reach
some other parameter setting that is not as good.

Generalization asks whether training 𝑓 on limited data can get as close to 𝑓 ∗

as training 𝑓 on unlimited data does, or whether it can overfit, approximating 𝑓 ∗

well on the limited training data but poorly on test data.

Exercise 1.1. What are your reasons for being interested in the theory of neural
networks? (There aren’t right or wrong answers here.)
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1.2 Our focus: theory of computation

Our focus this semester (which might or might not be the focus of future offer-
ings of this course) will be on what the theory of computation has to say about
the questions posed above. The theory of computation studies various computa-
tional problems and how they can be solved in various models of computation
(automata, Turing machines, families of Boolean circuits, logics).

For example: there are some problems that seem like they should be easy,
but current large language models struggle with them, like multiplying two in-
tegers. Can we use theory to make predictions about whether we should expect
language models to be able to solve such problems, or how language models
could be improved in order to solve them?

The theory of computation traditionally studies computational problems as
formal languages, or sets of finite strings over a finite alphabet. For example,
multiplication problems can be represented as strings like 12*12=132, where the
problem is to decidewhether the statement is true or not. Another examplewould
be deciding whether a directed graph is strongly connected or not. A directed
graph does not obviously have the form of a string, but can be represented (say)
as an adjacency list in JSON format:

0

1

2

3
{0: [1,2], 1: [], 2: [3], 3: []}

Although this might seem somewhat unnatural, it actually fits rather well with
current practice. Language models were originally developed for natural lan-
guages (whose utterances really are finite strings), and to use language models
on complex structures, we often simply serialize them, as above, and hope that
the model can “deserialize” them.

One consequence of our focus on strings is that, although we will start with
feed-forward neural networks, which operate on fixed-size objects, we will pro-
ceed rather quickly to neural networks that operate on strings of variable, un-
bounded length. If we were to only consider strings of length up to (say) 1000,
we would not be able to separate computational problems, or models of compu-
tation like neural networks, in any interesting way. While pragmatists may say
that astronomically long strings are unrealistic, I’d say that this again fits rather
well with current practice. The latest language models (at the time of writing)
have a maximum context length that is over a million tokens, and growing fast.
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1.3 Overview

(This offering of) the course will have four units. After a warm-up on perceptrons
considering the three questions of expressivity, optimization, and generalization,
we will study the expressivity of three major kinds of neural networks:

1. Feedforward neural networks (FFNNs) are the most basic architecture,
and a key component of the other two architectures we will look at.

2. Recurrent neural networks (RNNs) are the classic architecture for mod-
eling sequential data. They dominated natural language processing for sev-
eral years, and could be making a comeback with variants like RWKV and
state-space models.

3. Transformers currently dominate natural language processing and other
application areas of neural networks as well.

Then the last unit will be on

4. Optimization and generalization. We’ll give an overview of the key
results in optimization and generalization for neural networks. Most re-
search in this area focuses on FFNNs, and so will we, but we will try to
review some recent results on RNNs and transformers as well.

1.4 Preliminaries

We write N for the set of natural numbers including 0, and N>0 for the natural
numbers excluding 0. We write [𝑛] for the set {0, . . . , 𝑛−1} (note: not {1, . . . , 𝑛}).

We write log𝑥 for the natural logarithm of 𝑥 and log2 𝑥 for the base-2 loga-
rithm of 𝑥 . In the expression 𝑂 (log𝑛), the base does not matter, so we omit it.
We write either 𝑒𝑥 or exp𝑥 for the exponential function and sometimes we write
exp2 𝑥 for 2𝑥 . We write 𝑂 (poly(𝑛)) = ⋃

𝑘≥0𝑂 (𝑛𝑘 ).

1.4.1 Linear algebra
Variables that stand for vectors are lowercase boldface letters: a, b, . . . . We write
0 for the zero vector. Variables that stand for matrices are uppercase boldface
letters: A,B, . . . .

If x ∈ R𝑑 , we will normally write the components of x as 𝑥0, . . . , 𝑥𝑑−1 (note:
0-based indexing). But sometimes this is not convenient, so we also use a more
code-like notation where the components of x are x[0], . . . , x[𝑑 − 1]. If we write
x0, x1, these are names of two different vectors, and similarly for x(0) , x(1) . So,
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subscript 𝑖 and superscript (𝑖 ) mean “the 𝑖-th thing,” but bracketed [𝑖] means
“the 𝑖-th element of.”

For 𝑖 ∈ [𝑑], we write e𝑖 for the 𝑖-th unit vector of the standard basis of R𝑑 ,
that is, the vector with a 1 in the 𝑖-th component and 0 everywhere else.

1.4.2 Strings
If𝐴 is any set, we write𝐴∗ for the set of finite sequences of elements of𝐴. If Σ is
a finite alphabet (set of symbols), then Σ∗ is called the set of strings over Σ. We
also often deal with sequences of vectors; we write (nonstandardly) (R𝑑 )∗ for the
set of finite sequences of vectors in R𝑑 .

If a ∈ 𝐴∗, we write |a| for the length of a and 𝑎𝑖 or a[𝑖] for the 𝑖-th element
of a. As with vectors, we number the elements starting from 0, not 1. If a, b ∈ 𝐴∗,
we write ab or sometimes a · b for the concatenation of a and b.

A function from 𝐴∗ to 𝐵∗ is length-preserving if for all a ∈ 𝐴∗, we have |a| =
|𝑓 (a) |. In this case, we write 𝑓 : 𝐴∗ lp→ 𝐵∗.

1.4.3 Miscellaneous
Iverson bracket For any true or false statement 𝜙 , we write

I[𝜙] =
{
1 if 𝜙 is true
0 if 𝜙 is false.

(1.1)

Exercise 1.2. Did you catch these idiosyncratic notations?

(a) If x is a vector, what is its first component: x0, x1, 𝑥0, 𝑥1, x[0], x[1], 𝑥 [0],
𝑥 [1]? There may be more than one correct answer.

(b) If Σ = {a, b} and 𝑓 : Σ∗ lp→ Σ∗, then what is |𝑓 (aaa) |?

(c) Let

X ∈ (R𝑑 )∗

X =


1
2
3



4
5
6



7
8
9

 .
What is X[1] [2]? What is X[2] [1]?
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