
Chapter 10

Optimization

This chapter depends heavily on the exposition by Dwaraknath (2019), which
also has a lot of nice visualizations.

10.1 Linear Models

In this section, we show that if we train a linear regression model by gradient
descent, it converges to the global optimum. Assume that the training examples
are packed into X ∈ R𝑁×𝑑 and y ∈ R𝑁 such that (X[𝑖], y[𝑖]) is the 𝑖-th example.
The model’s prediction for the 𝑖-th example is

𝑦 = w · X[𝑖] . (10.1)

The squared-error loss is

L(w) = 1
2

𝑁−1∑︁
𝑖=0

(y[𝑖] − w · X[𝑖])2 (10.2)

=
1
2 ∥y − Xw∥2. (10.3)

Training by gradient descent looks like this:

𝜕L(w)
𝜕w

= −(y − Xw)⊤X (10.4)

w(𝑡 + 𝜂) = w(𝑡) − 𝜂
(
𝜕L(w)
𝜕w

)⊤
(10.5)

= w(𝑡) + 𝜂X⊤ (y − Xw(𝑡)). (10.6)
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We did something a little funny with the numbering of the weight vectors. We
imagine that training starts at time 𝑡 = 0, and at each step, we increment the time
by the learning rate 𝜂. Thought of in this way, this looks like the discretization of
a continuous-time process. If we take the limit as 𝜂 → 0, we get the differential
equation (called the gradient flow),

𝑑w
𝑑𝑡

= −
(
𝜕L(w)
𝜕w

)⊤
(10.7)

= X⊤ (y − Xw). (10.8)

We’re interested in how the model’s predictions improve or don’t improve over
time. So we write down a differential equation for the vector of errors (y − Xw):

𝑑

𝑑𝑡
(y − Xw) = −X

𝑑w
𝑑𝑡

(10.9)

= −XX⊤ (y − Xw). (10.10)

To make solving this differential equation easier, observe that since XX⊤ is
symmetric, it is diagonalizable. That is, there is a matrix Q that is orthogonal
(QQ⊤ = I) and makes Λ = QXX⊤Q⊤ diagonal. Apply the transformation Q to
transform the whole dataset:

X′ = QX (10.11)
y′ = Qy. (10.12)

Each new example (X′ [𝑖], y′ [𝑖]) is some linear combination of the old examples.
Let u′ be the vector of errors on the new data. We can write the loss in terms
of this vector, so minimizing the new error is equivalent to minimizing the old
error.

u′ = y′ − X′w (10.13)

L(w) = 1
2 ∥Q⊤u′∥2. (10.14)

We’re again interested in how the errors improve or don’t improve over time:

u′ = y′ − X′w (10.15)
𝑑u′

𝑑𝑡
= −X′𝑑w

𝑑𝑡
(10.16)

= −X′X⊤ (y − Xw) (10.17)
= −X′ (Q⊤X′)⊤ (y − Xw) (10.18)
= −X′X′⊤Q(y − Xw) (10.19)
= −Λu′ . (10.20)
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Now we can solve the differential equation for each u′ [𝑖] separately:

u′ [𝑖] = exp(−Λ[𝑖, 𝑖]𝑡)u′ [𝑖] . (10.21)

For each 𝑖 , we have Λ[𝑖, 𝑖] = ∥X′ [𝑖] ∥2 ≥ 0.

• If Λ[𝑖, 𝑖] > 0, then u′ [𝑖], the error on the 𝑖-th new example, decreases over
time and decays to 0 (good).

• If Λ[𝑖, 𝑖] = 0, then u′ [𝑖] does not change over time. But this implies X′ [𝑖] =
0, so u′ [𝑖] = y′ [𝑖].

– If y′ [𝑖] = 0, then the error on the 𝑖-th new example was 0 all along
(good).

– If y′ [𝑖] > 0, then the error on the 𝑖-th new example will never be 0
(bad) but it also does not depend on the initial weights, so it would
be present even at the global minimum of L (good).

We can conclude that as 𝑡 → ∞, the loss converges to its global minimum.

10.2 Nonlinear Models

10.2.1 Gradient flow

Now consider a nonlinear network 𝑓 (x,w), where x ∈ R𝑑 is the input andw ∈ R𝑝
are the parameters. As before, we pack the training data into X ∈ R𝑁×𝑑 and
y ∈ R𝑁 . Let’s also pack the network outputs into a vector,

f (w) =


𝑓 (X[0],w)
...

𝑓 (X[𝑁 − 1],w)

 (10.22)

𝜕f (w)
𝜕w

=


𝜕𝑓 (X[0],w)

𝜕w[0] · · · 𝜕𝑓 (X[0],w)
𝜕w[𝑝−1]

...
. . .

...
𝜕𝑓 (X[𝑁−1],w)

𝜕w[0] · · · 𝜕𝑓 (X[𝑁−1],w)
𝜕w[𝑝−1]

 (10.23)

We again use the squared-error loss

L(w) = 1
2 ∥y − f (w)∥2. (10.24)
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If we repeat the above derivation of the gradient flow, we get

𝑑w
𝑑𝑡

= −
(
𝜕L(w)
𝜕w

)⊤
(10.25)

=
𝜕f (w)
𝜕w

⊤
(y − f (w)) (10.26)

𝑑

𝑑𝑡
(y − f (w)) = − 𝜕f (w)

𝜕w
𝑑w
𝑑𝑡

(10.27)

= − 𝜕f (w)
𝜕w

(
𝜕f (w)
𝜕w

)⊤
︸                ︷︷                ︸

(∗)

(y − f (w)) . (10.28)

The term (∗) depends on w, which depends on 𝑡 . So it looks like we might be
stuck.

10.2.2 Neural tangent kernel

For brevity, we write ∇L for 𝜕L(w)
𝜕w and 𝐷f for 𝜕f (w)

𝜕w . The trick we are going to
use is to use a first-order Taylor approximation of 𝑓 with respect to w, around
the initial weights w0. That is, in (∗), we replace ∇f (w) with ∇f (w0), giving the
neural tangent kernel or NTK (Jacot et al., 2018). Then Eq. (10.28) can be solved
exactly as before.

The main question now becomes, under what conditions is the linear ap-
proximation a good approximation (known as the NTK regime or lazy training)?
There are many ways of answering this question; Dwaraknath (2019) follows
Chizat et al. (2019), so we will too.

Inverse relative scale If we take one step of gradient descent, w = w0 −
𝜂 (∇L(w0))⊤, we’d like the change in the loss to be big and the change in 𝐷f
to be small. The change in the loss is

ΔL(w0) = |L(w) − L(w0) | (10.29)
= L(w0 − 𝜂 (∇L(w0))⊤) − L(w0) (10.30)
≈ L(w0) − 𝜂∥∇L(w0)∥2 − L(w0) first-order Taylor approx.

(10.31)
= −𝜂∥∇L(w0)∥2. (10.32)

(If that looks weird to you, it kind of is! It’s the reason there are so many alterna-
tives to gradient descent, like Adam.) The number of steps it would take to reach
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zero loss would be something like

𝐾 =
L(w0)

𝜂∥∇L(w0)∥2 . (10.33)

Similarly, the change in 𝐷f is

Δ(𝐷f (w0)) = ∥𝐷f (w) − 𝐷f (w0)∥ (10.34)
= ∥𝐷f (w0 − 𝜂 (∇L(w0))⊤) − 𝐷f (w0)∥ (10.35)
≈ ∥𝐷f (w0) − 𝜂 𝐷2f (w0) (∇L(w0))⊤ − 𝐷f (w0)∥ (10.36)
= 𝜂∥𝐷2f (w0) (∇L(w0))⊤∥ (10.37)
≤ 𝜂 ∥𝐷2f (w0)∥ ∥∇L(w0)∥ (10.38)

(Here, ∥ · ∥ around matrices is the operator 2-norm, and 𝐷2f (w0) has type R𝑝 →
R𝑁×𝑝 , but it’s really okay if you don’t want to understand these details.) After 𝐾
steps, the total relative change in 𝐷f would be at most something like

𝐾
Δ(𝐷f (w0))
∥𝐷f (w0)∥

=
L(w0) 𝜂 ∥𝐷2f (w0)∥ ∥∇L(w0)∥

𝜂 ∥∇L(w0)∥2 ∥𝐷f (w0)∥
(10.39)

=
L(w0) ∥𝐷2f (w0)∥

∥∇L(w0)∥ ∥𝐷f (w0)∥
(10.40)

=
∥y − f (w0)∥2 ∥𝐷2f (w0)∥

∥y − f (w0)∥ ∥𝐷f (w0)∥ ∥𝐷f (w0)∥
(10.41)

=
∥y − f (w0)∥ ∥𝐷2f (w0)∥

∥𝐷f (w0)∥2 (10.42)

def
= 𝜅𝑓 (w0). (10.43)

And we want 𝜅𝑓 (w0) ≪ 1.

Scaledmodels There’s a very simpleway to ensure this. Assume that 𝑓 (x,w0) =
0, which we can ensure by randomly initializing half of the network and then ini-
tializing the other half to be its negative. Consider the function 𝛼 𝑓 :

𝜅𝛼 𝑓 (w0) = ∥y − 𝛼f (w0)∥
𝛼 ∥𝐷2f (w0)∥
𝛼2∥𝐷f (w0)∥2 (10.44)

= ∥y∥ ∥𝐷2f (w0)∥
𝛼 ∥𝐷f (w0)∥2 . (10.45)

So we can make 𝜅𝛼 𝑓 small by making 𝛼 big. Chizat et al. (2019) look at the rela-
tive difference between the gradient flow of 𝛼 𝑓 and that of its first-order Taylor
approximation 𝛼 𝑓 , showing that it has an upper bound related to 𝜅𝛼 𝑓 (w0).
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Two-layer FFNN In particular, let 𝑓 be a two-layer neural networkwith hidden-
layer width 𝑑hid,

𝑓 (x,U, v) = 𝛼 (𝑑hid) v · 𝜎 (Ux) (10.46)

where 𝛼 depends on the width. Letw0 = (U0, v0) be a random initialization. Then
it can be shown that

𝐸 [𝜅𝑓 (w0)] ≲
1

√
𝑑hid

+ 1
𝑑hid 𝛼 (𝑑hid)

. (10.47)

If we let 𝛼 (𝑑hid) = 1/
√
𝑑hid, as is standard in NTK papers, then we can make 𝜅𝛼 𝑓

small by making 𝑑hid big.
There seems to be some dissonance about whether this scaling factor of

√
𝑑hid

matches up with how neural networks are initialized in practice: for example,
so-called Xavier uniform initialization (Glorot and Bengio, 2010) would initialize
the second-layer weights from Uniform

(
±
√︃

6
𝑑hid+1

)
. That does look similar, but

as Chizat et al. (2019), scaling the second-layer weights versus scaling the model
itself don’t have the same gradient.

Limitations and alternatives Themost serious objection to the above analysis
is that neural networks in practice don’t operate within the NTK regime. If they
did, then we would expect their first-order approximations to work nearly as
well, and they do not. Chizat et al. (2019) experimented with varying 𝛼 and found
that larger 𝛼 indeed causes lazy training, but also does not perform well.

A second limitation is that it’s not clear how to make this analysis work
for transformers. Why? A randomly initialized self-attention layer has close-to-
uniform attention (Alberto Bietti, p.c.). So transformers near initialization, unlike
FFNNs near initialization, are not universal approximators.

An alternative approach to the NTK is mean-field analysis (Mei et al., 2018),
which studies the regime in which 𝛼 = 1/𝑚 instead of 𝛼 = 1/

√
𝑚.

10.3 Gradient Descent

So far, we’ve considered gradient flows, which approximate gradient descent us-
ing an infinitesimal learning rate (𝜂). What about (batch, not stochastic) gradient
descent – how does the choice of 𝜂 affect training?

Definition 10.1. A differentiable function L : R𝑑 → R is 𝛽-smooth for 𝛽 ≥ 0 if
its gradient ∇L is 𝛽-Lipschitz. That is, for all w,w′,

∥∇L(w′) − ∇L(w)∥ ≤ 𝛽 ∥w′ − w∥.
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If L is twice differentiable, then 𝛽-smoothness is equivalent to the eigenvalues
of ∇2L(w) being all at most 𝛽 .
Lemma 10.2. Let L : R𝑑 → R be 𝛽-smooth, and let 𝜂 < 2/𝛽 be a learning rate.
Then one step of gradient descent decreases L:

w′ = w − 𝜂 (∇L(w(𝑡 ) ))⊤

L(w′) < L(w).

Proof. (Farina, 2024; Arora, 2022) For brevity write h = w′ − w.

L(w′) = L(w) +
∫ 1

0
∇L(w + 𝜏h) · h𝑑𝜏 (10.48)

= L(w) + ∇L(w) · h +
∫ 1

0
(∇L(w + 𝜏h) − ∇L(w)) · h𝑑𝜏 (10.49)

≤ L(w) + ∇L(w) · h +
∫ 1

0
∥∇L(w + 𝜏h) − ∇L(w)∥ ∥h∥ 𝑑𝜏 (10.50)

≤ L(w) + ∇L(w) · h +
∫ 1

0
𝛽𝜏 ∥h∥2 𝑑𝜏 (10.51)

= L(w) + ∇L(w) · h + 𝛽2 ∥h∥2 (10.52)

= L(w) − ∇L(w) · 𝜂∇L(w) + 𝛽2 ∥𝜂∇L(w)∥2 (10.53)

= L(w) +
(
−1 + 𝛽𝜂2

)
𝜂∥∇L(w)∥2 (10.54)

< L(w). (10.55)

□

From this, we would expect that smaller values of 𝛽 are good, and we should
set 𝜂 < 2/𝛽 .

Example: linear regression

L(w) = 1
2

𝑁−1∑︁
𝑖=0

(y[𝑖] − w · X[𝑖])2 (10.56)

=
1
2 ∥y − Xw∥2 (10.57)

∇L(w) = (Xw − y)⊤X (10.58)
∇2L(w) = X⊤X. (10.59)

Remember that X⊤X appeared before in the calculation of the gradient flow, and
we diagonalized it into Λ; the leading entry of this matrix is 𝛽 .
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The edge of stability However, for neural networks (Cohen et al., 2021), the
condition 𝜂 < 2/𝛽 is routinely violated. If we think of 𝛽 as something that can
vary from region to region (we’d have to modify the above definitions accord-
ingly), then 𝛽 increases until it reaches 2/𝜂, and then it enters a regime called
“the edge of stability” in which 𝛽 remains the same, but the loss continues to
improve. Why this happens, and what the analogous results for other training
methods like stochastic gradient descent or adaptive methods like Adam, is still
an active area of research.

10.4 Optimization is NP-hard

Finally, we consider the most general version of the optimization problem: with
no constraints on L and no constraints on the optimization method, how hard
is it to find the global minimum of L?

Theorem 10.3. Given a function L : R𝑑 → R and ℓ ∈ R, it is NP-hard to decide
whether ℓ = minw L(w).

Proof. By reduction from SUBSET-SUM, which is the problem of deciding, given
{𝑎0, . . . , 𝑎𝑛−1} ⊆ N and 𝑡 ∈ N, whether there is a subset 𝐶 ⊆ [𝑛] such that∑

𝑖∈𝐶 𝑎𝑖 = 𝑡 . Given a SUBSET-SUM instance ({𝑎0, . . . , 𝑎𝑛−1}, 𝑡), construct the fol-
lowing global minimization problem:

L : R𝑛 → R

L(w) = ©«
∑︁
𝑖∈[𝑑 ]

w[𝑖] 𝑎𝑖 − 𝑡
ª®¬

2

+
∑︁
𝑖∈[𝑑 ]

(w[𝑖] (1 − w[𝑖]))2

ℓ = 0.

If there is a 𝐶 ⊆ [𝑛] such that
∑

𝑖∈𝐶 𝑎𝑖 = 𝑡 , then

L
©«

I[0 ∈ 𝐶]

...

I[𝑛 − 1 ∈ 𝐶]


ª®®¬ = 0.

Otherwise, L(w) > 0 for all w. □

(This is the usual way that global minimization is formulated as a decision
problem. The other way would be: given L and w, decide whether w is a mini-
mizer of L. Presumably this is also NP-hard, but seems trickier to prove.)
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