
Chapter 11

Generalization

This chapter is a very brief introduction to statistical learning theory. This is
not my area of expertise, so I’m just giving a tour of some key results. For more
details, please see the notes by Ma (2022) which I’m heavily drawing from.

11.1 Introduction

Assume the following setup for supervised binary classification:

• An input space X and output space Y = {−1, +1}. For example, X is the
set of all possible images and an output of +1 means “cat” and −1 means
“not a cat.”

• A distribution 𝜋 (𝑋,𝑌) where 𝑋 ∈ X, 𝑌 ∈ Y. Anything with “population”
in its name is related to 𝜋 .

• Training data D = (𝑥 (0) , 𝑦 (0)), . . . , (𝑥 (𝑁−1) , 𝑦 (𝑁−1)) ∈ X × Y. Anything
with “sample” or “empirical” in its name is related to the training data.

• A hypothesis spaceH containing functions X → R. For example,H con-
tains all possible parameter settings of a neural network. If ℎ ∈ H and
𝑥 ∈ X, then ℎ(𝑥) > 0 is a positive classification and ℎ(𝑥) < 0 is a negative
classification.

• A loss function ℓ : R → R≥0. If ℎ ∈ H , then ℓ (𝑦ℎ(𝑥)) measures how bad
ℎ’s prediction on 𝑥 is when the correct answer is 𝑦. For example, the 0–1
loss is

ℓ0–1 (𝑠) =
{
0 if 𝑠 > 0
1 if 𝑠 < 0.

118

Chapter 11. Generalization 119

Adjusting the setup for multi-class classification or so that different kinds of mis-
takes incur different losses is possible but messy.

Given the training data D, the learning problem is to choose the “best” hy-
pothesis fromH . To pinpoint what “best” means, we need a fewmore definitions,
where ℎ ∈ H :

• Population risk: 𝐿(ℎ) = 𝐸 (𝑥,𝑦)∼𝜋 [ℓ (𝑦ℎ(𝑥))]

• Empirical risk: 𝐿̂(ℎ) = 1
𝑁

∑𝑁
𝑖=1 ℓ (𝑦ℎ(𝑥)).

• Excess risk: 𝐿(ℎ̂) − 𝐿(ℎ∗) where ℎ̂ minimizes empirical risk and ℎ∗ mini-
mizes population risk.

Ideally, we want to find an ℎ that minimizes 𝐿(ℎ). But in practice, we don’t
have access to 𝜋 , but just the training data D. So the best we can do is to find an
ℎ that minimizes 𝐿̂(ℎ), known as empirical risk minimization (ERM). Does ERM
also minimize 𝐿(ℎ)?

We use the stronger criterion of uniform convergence, which is to bound the
difference |𝐿(ℎ) − 𝐿̂(ℎ) | for all ℎ ∈ H . This criterion is related to excess risk as
follows. Assume that ℎ̂ minimizes the empirical risk 𝐿̂. Then

𝐿(ℎ̂) − 𝐿(ℎ∗) = 𝐿(ℎ̂) − 𝐿̂(ℎ̂)︸ ︷︷ ︸
generalization

+ 𝐿̂(ℎ̂) − 𝐿̂(ℎ∗)︸ ︷︷ ︸
optimization

+ 𝐿̂(ℎ∗) − 𝐿(ℎ∗)︸ ︷︷ ︸
concentration

. (11.1)

The first term is generalization: minimizing this term means that the model
learned from the training data will do well on unseen data. The second term is
optimization (though not exactly the way we worded it in Section 1.1): minimiz-
ing this term means that the model does well on training data. By assumption,
ℎ̂ does minimize this term, so it is less than or equal to zero. The third term is
also kind of related to generalization, but ℎ∗ is not affected by training, so there’s
nothing here to minimize. For now, we can combine the first and third terms to
get

𝐿(ℎ̂) − 𝐿(ℎ∗) ≤ 2 sup
ℎ

|𝐿(ℎ) − 𝐿̂(ℎ) |.

That is, if, for all models, empirical risk tracks population risk, then we know
that ERM generalizes well.

11.2 Finite Sets of Functions

Let’s start with the simplest case whereH is a finite set of functions. For example,
you have 100 randomly initialized neural networks, and for some reason, you
don’t want to train them, but just choose the one that best fits the training data.

CSE 60963: Theory of Neural Networks Version of November 20, 2024

Chapter 11. Generalization 120

Theorem 11.1. LetH be finite and ℓ (𝑦ℎ(𝑥)) ∈ [0, 1]. Then for any 𝛿 , with prob-
ability at least (1 − 𝛿), we have for all ℎ ∈ H ,

|𝐿(ℎ) − 𝐿̂(ℎ) | ≤
√︂

log |H | + log(2/𝛿)
2𝑁

. (11.2)

The empirical risk 𝐿̂ depends on the training data D, which is chosen at
random.We can’t bound |𝐿(ℎ) − 𝐿̂(ℎ) | for certain, but only with some probability
(1−𝛿). We get to choose 𝛿 , but the more certainty we need, the looser the bound
will be.

Proof. If 𝑋1, . . . , 𝑋𝑁 are bounded independent random variables, Hoeffding’s in-
equality bounds the probability of their sum falling more than 𝜖 away from its
expected value. For the special case where all the 𝑋𝑖 are in [0, 1], it says

𝑃 (|𝐿̂(ℎ) − 𝐿(ℎ) | ≥ 𝜖) ≤ 2 exp(−2𝑁𝜖2).

That’s the probability of a single hypothesis having |𝐿(ℎ) − 𝐿̂(ℎ) | ≥ 𝜖 . We have
|H | hypotheses, so the probability that any one of them has |𝐿(ℎ) − 𝐿̂(ℎ) | ≥ 𝜖 is
(this is called the union bound):

𝑃 (∃ℎ ∈ H .|𝐿̂(ℎ) − 𝐿(ℎ) | ≥ 𝜖) ≤ 2|H | exp(−2𝑁𝜖2).

Let this be 𝛿 and solve for 𝜖 :

𝜖 =

√︂
log |H | + log(2/𝛿)

2𝑁
.

The probability that all the hypotheses in H have |𝐿(ℎ) − 𝐿̂(ℎ) | less than this is
(1 − 𝛿). □

11.3 Rademacher Complexity

Just about any interesting hypothesis spaceH has infinitely many functions, so
the above approach won’t work. Instead, we need a measure of the “complexity”
of H . Perhaps the best-known such measure is VC dimension, but Rademacher
complexity is more useful for our purposes.

Definition 11.2. Let F be a family of functions X × Y → R, and let D =

((𝑥 (𝑖) , 𝑦 (𝑖)))𝑖∈[𝑁] . The empirical Rademacher complexity of F and D is

RadD (F) = 𝐸𝜎1,...,𝜎𝑛

sup𝑓 ∈F

1
𝑁

∑︁
𝑖∈[𝑁]

𝜎𝑖 𝑓 (𝑥 (𝑖) , 𝑦 (𝑖))
 (11.3)

where each 𝜎𝑖 is a random variable which is either +1 or −1 with equal probabil-
ity.

CSE 60963: Theory of Neural Networks Version of November 20, 2024

Chapter 11. Generalization 121

Theorem 11.3. Let F be a family of functionsX×Y → R, such that for all 𝑓 ∈ F
and (𝑥,𝑦) ∈ X ×Y, 𝑓 (𝑥,𝑦) ∈ [0, 1]. If D = ((𝑥 (𝑖) , 𝑦 (𝑖)))𝑖∈[𝑁] is drawn at random
from a distribution 𝜋 , then, with probability at least (1 − 𝛿), for any 𝑓 ∈ F ,

1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖 , 𝑦𝑖) − 𝐸𝜋 [𝑓 (𝑥,𝑦)] ≤ 2 RadD (F) + 3
√︂

log(2/𝛿)
2𝑁

.

Definition 11.4. A function 𝑓 : R → R is 𝜌-Lipschitz continuous (or simply 𝜌-
Lipschitz) if, for all 𝑥,𝑦 ∈ R, |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝜌 |𝑥 − 𝑦 |.

For example, the ramp loss is 1/𝛾-Lipschitz:

ℓ𝛾 : R→ [0, 1]

𝑠 ↦→


1 if 𝑠 ≤ 0
1 − 𝑠/𝛾 if 0 ≤ 𝑠 ≤ 𝛾

1 if 𝑠 ≥ 𝛾 .

0 𝛾

0

0.5

1

𝑠
ℓ 𝛾
(𝑠
)

Lemma 11.5 (Contraction). Let F be a family of functions X × Y → R, and let
𝑓 : R→ R be 𝜌-Lipschitz continuous. For any D = ((𝑥 (𝑖) , 𝑦 (𝑖)))𝑖∈[𝑁] ,

RadD (𝑓 ◦ F) ≤ 𝜌 RadD (F).

Corollary 11.6. LetH be a hypothesis space, let ℓ be a 𝜌-Lipschitz continuous loss
function such that ℓ (𝑦ℎ(𝑥)) ∈ [0, 1], and let 𝜋 be a distribution over X ×Y. Then,
with probability at least (1 − 𝛿), for any ℎ ∈ H ,

𝐿̂(ℎ) − 𝐿(ℎ) ≤ 2𝜌 RadD (H) + 3
√︂

log(2/𝛿)
2𝑁

.

Proof. Use Theorem 11.3 and Lemma 11.5. □

Lemma 11.5 is useful for “peeling” a function apart. Here are some other prop-
erties (though we won’t use all of them):

Lemma 11.7. Let F and F ′ be a families of functions X × Y → R. For any
D = ((𝑥 (𝑖) , 𝑦 (𝑖)))𝑖∈[𝑁] ,

(a) RadD (𝑐F) = |𝑐 | RadD (F)

(b) RadD (F + F ′) = RadD (F) + RadD (F ′)

(c) RadD (|F |) = 2 RadD (F)

where any operation applied to F means to apply the operation to every function
in F .

CSE 60963: Theory of Neural Networks Version of November 20, 2024

Chapter 11. Generalization 122

11.4 Linear Models

Wehave the following bound for a hypothesis space of linearmodelswith bounded
norm (Ma, 2022).

Theorem 11.8. For any 𝐵 > 0, letH be the set of linear models,H = {x ↦→ w ·x |
w ∈ R𝑑 , ∥w∥ ≤ 𝐵}, and let D = (x(𝑖))𝑖∈[𝑁] and 𝑅 = max𝑖∈[𝑁] ∥x(𝑖) ∥. Then

RadD (H) ≤ 𝐵𝑅
√
𝑁
.

Lemma 11.9.

𝐸𝜎

 sup
∥w∥≤𝐵
𝑓 ∈F

1
𝑁

∑︁
𝑖∈[𝑁]

𝜎𝑖 (w · 𝑓 (x))
 ≤ 𝐵 · 𝐸𝜎

sup𝑓 ∈F

 1𝑁 ∑︁
𝑖∈[𝑁]

𝜎𝑖 𝑓 (x)

 .

Proof.

𝐸𝜎

 sup
∥w∥≤𝐵
𝑓 ∈F

1
𝑁

∑︁
𝑖∈[𝑁]

𝜎𝑖 (w · 𝑓 (x))


= 𝐸𝜎

 sup
∥w∥≤𝐵
𝑓 ∈F

w · ©­« 1𝑁
∑︁

𝑖∈[𝑁]
𝜎𝑖 𝑓 (x)ª®¬


≤ 𝐸𝜎

 sup
∥w∥≤𝐵
𝑓 ∈F

∥w∥

 1𝑁 ∑︁
𝑖∈[𝑁]

𝜎𝑖 𝑓 (x)

 Cauchy-Schwarz

= 𝐵 · 𝐸𝜎
sup𝑓 ∈F

 1𝑁 ∑︁
𝑖∈[𝑁]

𝜎𝑖 𝑓 (x)

 .

□

Lemma 11.10. Let D = (x(𝑖))𝑖∈[𝑁] and 𝑅 = max𝑖∈[𝑁] ∥x(𝑖) ∥. Then

𝐸𝜎



 1𝑁 ∑︁

𝑖∈[𝑁]
𝜎𝑖x(𝑖)

 ≤ 𝑅

√
𝑁
.

CSE 60963: Theory of Neural Networks Version of November 20, 2024

Chapter 11. Generalization 123

Proof.

𝐸𝜎



 1𝑁 ∑︁

𝑖∈[𝑁]
𝜎𝑖x(𝑖)



=
1
𝑁

√√√√√
𝐸𝜎



 ∑︁
𝑖∈[𝑁]

𝜎𝑖x(𝑖)

2 Jensen’s inequality

=
1
𝑁

√√√√√
𝐸𝜎

©­«
∑︁

𝑖∈[𝑁]
𝜎𝑖x(𝑖)

ª®¬ · ©­«
∑︁
𝑗∈[𝑁]

𝜎 𝑗x(𝑗)
ª®¬


=
1
𝑁

√√√√√
𝐸𝜎


∑︁

𝑖∈[𝑁]

∑︁
𝑗∈[𝑁]

𝜎𝑖x(𝑖) · 𝜎 𝑗x(𝑗)


=
1
𝑁

√√√√√√√√√
𝐸𝜎


∑︁

𝑖∈[𝑁]
∥x(𝑖) ∥2 +

∑︁
𝑖, 𝑗∈[𝑁]

𝑖≠𝑗

𝜎𝑖x(𝑖) · 𝜎 𝑗x(𝑗)


=

1
𝑁

√︄ ∑︁
𝑖∈[𝑁]

∥x(𝑖) ∥2

≤ 𝑅
√
𝑁
.

□

Proof of Theorem 11.8.

RadD (F) = 𝐸𝜎

 sup
∥w∥≤𝐵

1
𝑁

∑︁
𝑖∈[𝑁]

𝜎𝑖 (w · x(𝑖))
 def. of Rad

≤ 𝐵 · 𝐸𝜎


 1𝑁 ∑︁

𝑖∈[𝑁]
𝜎𝑖x(𝑖)

 Lemma 11.9

≤ 𝐵𝑅
√
𝑁
. Lemma 11.10

□

Putting this together with Corollary 11.6, we obtain the generalization bound

CSE 60963: Theory of Neural Networks Version of November 20, 2024

Chapter 11. Generalization 124

that, with probability (1 − 𝛿), for all ℎ ∈ H :

𝐿̂(ℎ) − 𝐿(ℎ) ≤ 2𝐵𝑅
𝛾
√
𝑁

+ 3
√︂

log(2/𝛿)
2𝑁

.

Recall that for the perceptron, we defined 𝛾 relative to ∥w∥; equivalently, it could
have been defined as the minimum margin such that ∥w∥ = 1. Accordingly, if
we set 𝐵 = 1 in the generalization bound above, it is similar to the perceptron
(Theorem 2.8), except for a square root.

11.5 Two-Layer Networks

There are lots of different generalization bounds for FFNNs; here’s a relatively
easy one (Golowich et al., 2018; Bartlett, 2019).

If W is a matrix, we write ∥W∥𝐹 for the Frobenius norm of W, which is just
the usual 2-norm of W flattened into a vector: ∥W∥𝐹 =

√︃∑
𝑖, 𝑗 W[𝑖, 𝑗]2.

Theorem 11.11. Let F𝐿,𝑑out be the class of 𝐿-layer ReLU FFNNs with output size
𝑑out, in which each weight matrix has Frobenius norm at most 𝐵, and let D =

(x(𝑖))𝑖∈[𝑁] and 𝑅 = max𝑖∈[𝑁] ∥x(𝑖) ∥. Then

RadD (F𝐿,1) ≤
(2𝐵)𝐿𝑅
√
𝑁

.

This theoremworks for any activation that is positively 1-homogeneous, which
means that for any 𝑐 > 0, we have ReLU(𝑐𝑥) = 𝑐 ReLU(𝑥).

Lemma 11.12.

𝐸𝜎

 sup
𝑓 ∈F

∥W∥𝐹 ≤𝐵

 1𝑁 ∑︁
𝑖∈[𝑁]

𝜎𝑖 ReLU(W𝑓 (x(𝑖)))


 ≤ 2𝐵 ·𝐸𝜎

sup𝑓 ∈F

 1𝑁 ∑︁
𝑖∈[𝑁]

𝜎𝑖 𝑓 (x(𝑖))

 .

CSE 60963: Theory of Neural Networks Version of November 20, 2024

Chapter 11. Generalization 125

Proof.

𝐸𝜎

 sup
𝑓 ∈F

∥W∥𝐹 ≤𝐵

 1𝑁 ∑︁
𝑖∈[𝑁]

𝜎𝑖 ReLU(W𝑓 (x(𝑖)))



= 𝐸𝜎

 sup
𝑓 ∈F

∥W∥𝐹 ≤𝐵

1
𝑁

√√√√√ ∑︁
𝑗∈[𝑑]

©­«
∑︁

𝑖∈[𝑁]
𝜎𝑖 ReLU(W[𝑗] · 𝑓 (x(𝑖)))ª®¬

2
= 𝐸𝜎

 sup
𝑓 ∈F

∥W∥𝐹 ≤𝐵

1
𝑁

√√√√√ ∑︁
𝑗∈[𝑑]

∥W[𝑗] ∥2 ©­«
∑︁

𝑖∈[𝑁]
𝜎𝑖 ReLU

(
W[𝑗]
∥W[𝑗] ∥ · 𝑓 (x(𝑖))

)ª®¬
2

by positive homogeneity

= 𝐸𝜎

 sup
𝑓 ∈F∑

𝑗 ∥W[𝑗] ∥2≤𝐵2

1
𝑁

√√√√√ ∑︁
𝑗∈[𝑑]

∥W[𝑗] ∥2 ©­«
∑︁

𝑖∈[𝑁]
𝜎𝑖 ReLU

(
W[𝑗]
∥W[𝑗] ∥ · 𝑓 (x(𝑖))

)ª®¬
2

≤ 𝐵 · 𝐸𝜎

 sup𝑓 ∈F
∥w∥=1

������ 1𝑁 ∑︁
𝑖∈[𝑁]

𝜎𝑖 ReLU
(
w · 𝑓 (x(𝑖))

)������


≤ 2𝐵 · 𝐸𝜎

 sup𝑓 ∈F
∥w∥=1

1
𝑁

∑︁
𝑖∈[𝑁]

𝜎𝑖 ReLU
(
w · 𝑓 (x(𝑖))

) Lemma 11.7c

≤ 2𝐵 · 𝐸𝜎

 sup𝑓 ∈F
∥w∥=1

1
𝑁

∑︁
𝑖∈[𝑁]

𝜎𝑖 (w · 𝑓 (x(𝑖)))
 Lemma 11.5

≤ 2𝐵 · 𝐸𝜎
sup𝑓 ∈F

 1𝑁 ∑︁
𝑖∈[𝑁]

𝜎𝑖 𝑓 (x(𝑖))

 . Lemma 11.9

□

Proof of Theorem 11.11. Each function in F𝐿,1 is of the formw·ReLU(𝑓 (x)) where

CSE 60963: Theory of Neural Networks Version of November 20, 2024

Chapter 11. Generalization 126

𝑓 ∈ F𝐿−1,𝑑 , w ∈ R𝑑 , and ∥w∥ ≤ 𝐵. Then

RadD (F𝐿,1) = 𝐸𝜎

 sup
𝑓 ∈F𝐿−1,𝑑
∥w∥≤𝐵

1
𝑁

∑︁
𝑖∈[𝑁]

𝜎𝑖 (w · 𝑓 (x))
 def. of Rad

≤ 𝐵 · 𝐸𝜎
 sup
𝑓 ∈F𝐿−1,𝑑

 1𝑁 ∑︁
𝑖∈[𝑁]

𝜎𝑖 𝑓 (x)

 Lemma 11.9

Then we prove the rest by induction: the base case is Lemma 11.10, and the in-
ductive step is Lemma 11.12. □

CSE 60963: Theory of Neural Networks Version of November 20, 2024

Bibliography

Bartlett, Peter (2019). Generalization in deep networks II. Tutorial at YES work-
shop on “Understanding Deep Learning: Generalization, Approximation and
Optimization”.

Golowich, Noah, Alexander Rakhlin, and Ohad Shamir (2018). Size-independent
sample complexity of neural networks. In: Proceedings of the 31st Conference
On Learning Theory (COLT). Vol. 75. Proceedings of Machine Learning Re-
search. full version available as arXiv:1712.06541, pp. 297–299.

Ma, Tengyu (2022). Lecture notes formachine learning theory (CS229M/STATS214).

127

https://www.stat.berkeley.edu/~bartlett/talks/201903EindhovenGen2.pdf
https://arxiv.org/pdf/1712.06541
https://arxiv.org/pdf/1712.06541
https://github.com/tengyuma/cs229m_notes

	Generalization
	Introduction
	Finite Sets of Functions
	Rademacher Complexity
	Linear Models
	Two-Layer Networks

