
DR
AF
T

Chapter 2

Perceptrons

Perceptrons are the very simplest kind of neural network, and the only kind
of neural network that we understand well. The niceness of perceptrons and
other linear models like logistic regression and support vector machines drove
much machine learning research in the 1990s and 2000s. We discuss them here
to show how the kinds of questions we are interested in have clear answers at
least sometimes.

2.1 Model
De�nition 2.1. A perceptron (Rosenblatt, 1958) (or linear classi�er) is a function

lin : R3 ! R
x 7! w · x + 1 (2.1)

where the parameters to be learned are

w 2 R3

1 2 R.

We will generally use mnemonic names like lin (for “linear”) for networks. If
there is more than one perceptron, we’ll call them lin1, lin2, etc., or lin0.

To use the perceptron as a binary classi�er, we have to de�ne what the clas-
si�cation criterion is. In this chapter, it will be convenient to treat lin(x) > 0 as
true, lin(x) < 0 as false, and lin(x) = 0 as neither true nor false. However, later
we will use other criteria.

4

DR
AF
T

Chapter 2. Perceptrons 5

2.2 Expressivity
We can characterize the functions expressible by perceptrons exactly, if a little
tautologically: under the above de�nition, they express all and only the a�ne
functions R3 ! R.

A more interesting, and historically important, question is, what Boolean
functions can they express? For the inputs of the network, let us use +1 to rep-
resent true and �1 to represent false.

Example 2.2. We can de�ne perceptrons that compute the AND, OR, and NOT
functions:

�1 0 1

�1

0

1 +1

�1

�1

�3

G1

G 2

�1 0 1

�1

0

1 +3

+1

+1

�1

G1

G 2

�1 0 1

+1 �1

G1

AND: ~ = G1 + G2 � 1 OR: ~ = G1 + G2 + 1 NOT: ~ = �G1
However, not every Boolean function can be computed by perceptrons.

Theorem 2.3 (Minsky and Papert, 1969). There is no perceptron lin : R2 ! R
that computes the XOR function, that is,

lin(�1,�1) < 0 lin(�1, +1) > 0
lin(+1,�1) > 0 lin(+1, +1) < 0.

Proof. It’s easy to see that there is no line that separates the positive and negative
points:

�1 0 1

�1

0

1

�

�+

+

G1

G 2

⇤

Historically, this theorem had a huge impact: it led in part to the �rstAI winter
in the 1970s. Although it was known that multilayer perceptrons (Chapter 3)
could express XOR, it was not known how to train multilayer perceptrons.

CSE 60963: Theory of Neural Networks Version of May 14, 2024

DR
AF
T

Chapter 2. Perceptrons 6

2.3 Training
Neural networks are trained using stochastic gradient descent (SGD) or back-
propagation (Rumelhart et al., 1986). The original algorithm for training percep-
trons (Rosenblatt, 1958) turns out to just be SGD with a particular choice of loss
function.

Without loss of generality, we can assume that perceptrons do not have a bias
term 1. This is because we can always add a new feature to each x that always
has the value 1, and the weight for this feature is exactly equivalent to 1.

Let lin(x;w) be a perceptron, where we’ve made the dependence on the
parameters w explicit. Assume training examples (x(1) ,~ (1)), . . . , (x(#) ,~ (#)),
where for each 8 , x(8) 2 R3 ,~ (8) 2 {�1, +1}. To recover the traditional perceptron
update, we de�ne the loss incurred by the 8-th example to be

L(8) (w) = max{0,�~ (8) lin(x(8) ;w)} (2.2)

because if lin(x(8)) and ~ (8) have opposite signs, then �~ (8) lin(x(8)) is positive.
(This notational convenience is the reason we are using +1 and �1 to represent
truth values.) Then we want to minimize L(w) = Õ

8 L(8) (w).
Suppose our data consists of the points

x(1) =

1
1

�
~ (1) = �1

x(2) =

2
1

�
~ (2) = +1

Then the loss surface looks like this:

�2 0 2 4 �4 �2
0 20

5

w[1] w[2]
�2 0 2 4
�4

�2

0

2

w[1]

w
[2
]

In the right-hand plot, the shaded area is where the loss is 0, and the contour
lines are where the loss is 1, 2,

We do stochastic gradient descent on L(w). The parameters are initialized
to w = 0. Then for each training example, we update the parameters as follows.

CSE 60963: Theory of Neural Networks Version of May 14, 2024

DR
AF
T

Chapter 2. Perceptrons 7

The gradient of L(8) for a correctly classi�ed example (~ (8) lin(x(8) ;w) > 0) is
zero, so no update is made. The gradient for an incorrectly classi�ed example
(~ (8) lin(x(8) ;w) < 0) is

mL(8)

mw
= �~ (8)x(8) . (2.3)

For the edge case ~ lin(x(8) ;w) = 0, we choose the subgradient to be the same as
in the incorrectly-classi�ed case. So the update for ~ (8) lin(x(8) ;w) 0 (using a
constant learning rate) is

w w + ~ (8)x(8) . (2.4)

If the algorithm makes a pass over the training data without making a single
update, it terminates.

�2 0 2 4
�4

�2

0

2

w[1]

w
[2
]

The above plot shows the perceptron algorithm on our simple example. This
run terminates, and in the next section we will show that if there is a weight
vector that classi�es all training examples correctly, the perceptron algorithm is
guaranteed to �nd such a vector and terminate.

2.4 Trainability
The loss function (2.2) is convex, so (sub)gradient descent, if the learning rate
is chosen correctly, is guaranteed to converge to a global minimum (Bertsekas,
2015). But herewe present the proof of the convergence of the original perceptron
training algorithm.

CSE 60963: Theory of Neural Networks Version of May 14, 2024

DR
AF
T

Chapter 2. Perceptrons 8

�2 0 2 4
�4

�2

0

2

w[1]

w
[2
]

�2 0 2 4
�4

�2

0

2

w(4)

w(5)

w[1]

w
[2
]

(a) (b)

Figure 2.1: (a) At each update of the perceptron algorithm, theweightsw(C) grows
in the direction of w⇤ by at least W ; the contour lines are w⇤ · w = 8W kw⇤k for
8 = 0, 1, (b) At each update, the weight vector and the weight update form an
acute angle.

De�nition 2.4. Let D = (x(1) ,~ (1)), . . . , (x(#) ,~ (#)) be a set of data points,
where x(8) 2 R3 and ~ (8) 2 {�1, +1} for all 8 . We say that D is linearly separable
with margin W > 0 if there exist weights w⇤ such that, for all 8 ,

~ (8)w⇤ · x(8) � W kw⇤k . (2.5)

Theorem 2.5 (Noviko�, 1962). Let D = (x(1) ,~ (1)), . . . , (x(#) ,~ (#)) be a set
of data points, linearly separable with margin W . Let ' = max8 kx(8) k. Then the
perceptron training algorithm converges after at most '2/W2 steps to a perceptron
that linearly separates D.

Proof. This proof mostly follows Freund and Schapire (1999). Let w(C�1) be the
weights before the C-thmistake, and let 8C be the example onwhich the perceptron
made the C-th mistake. The update after the C-th mistake is

w(C) = w(C�1) + ~ (8C)x(8C) (2.6)

and because ~ (8C)x(8C) points in the same general direction as w⇤ (Eq. (2.5)), the
update moves the weights more in the direction of w⇤. An example is shown in

CSE 60963: Theory of Neural Networks Version of May 14, 2024

DR
AF
T

Chapter 2. Perceptrons 9

Fig. 2.1a.

w⇤ ·w(C) = w⇤ ·w(C�1) +w⇤ · ~ (8C)x(8C) (2.7)

� w⇤ ·w(C�1) + W kw⇤k by Eq. (2.5) (2.8)

� w⇤ ·w(C�2) + W kw⇤k + W kw⇤k repeating above reasoning (2.9)
...

� CW kw⇤k . (2.10)

This implies that kw(C) k must also be at least CW :.

kw⇤k kw(C) k � CW kw⇤k Cauchy–Schwarz (2.11)

kw(C) k � CW . (2.12)

On the other hand, because we only perform an update (Eq. (2.6)) after a
mistake, it must be that ~ (8C)x(8C) points in the opposite general direction from
w(C) , that is,

~ (8C)x(8C) ·w(C) 0. (2.13)

This gives an upper bound on the weight norm:

kw(C) k2 = kw(C�1) + ~ (8C)x(8C) k2 (2.14)

= kw(C�1) k2 + 2w(C�1) · ~ (8C)x(8C)| {z }
 0 by Eq. (2.13)

+ k~ (8C)x(8C) k2 (2.15)

 kw(C�1) k2 + '2 (2.16)

 kw(C�2) k2 + '2 + '2 (2.17)
...

 C'2. (2.18)

Combining Eqs. (2.12) and (2.18), we get

(CW)2 C'2 (2.19)
C '2/W2. (2.20)

In other words, there is a �nite number of mistakes, so the perceptron eventually
linearly separates D. ⇤

There’s also amistake bound for the non-separable case (Freund and Schapire,
1999), though the bound has to depend on the number of training steps.

CSE 60963: Theory of Neural Networks Version of May 14, 2024

DR
AF
T

Chapter 2. Perceptrons 10

2.5 Generalization
Finally we turn to generalization ability: after being trained on some training
data, how well will a perceptron classify test examples, which it (in general) has
never seen before? To study this question, we need to think of training examples
and test examples as random samples from some probability distribution. We
can’t guarantee that the perceptron will get a test example right, but we can
bound the probability of a mistake.

Theorem 2.6 (Vapnik and Chervonenkis, 1974). LetD be a set of examples (pos-
sibly with duplicates). Fix # > 0. Let

⇡ (1) = (x(1) ,~ (1))
...

⇡ (#) = (x(#) ,~ (#))
⇡ (#+1) = (x(#+1) ,~ (#+1))

be examples sampled uniformly at random from D. Let ' = max8 kx(8) k, and as-
sume that the examples are linearly separable with margin W . If a perceptron is
trained to convergence on ⇡ (1) , . . . ,⇡ (#) to obtain weights w, the probability that
it will make a mistake on ⇡ (#+1) is

E
h
I
h
~ (#+1)w · x(#+1) 0

i i
 1

+ 1
E

'2

W2

�
.

where the expectations are over the choice of ⇡ (1) , . . . ,⇡ (#+1) .

The original proof is in Russian, and the following is from Hardt and Recht
(2022, Chapter 3, Theorem 2).

Proof. Because the examples are independent and identically distributed, it doesn’t
make any di�erence if the training and test data are chosen by sampling # train-
ing examples and 1 test example, versus sampling (# +1) examples and choosing
one uniformly at random to be the the test example.

Let w(¬8) be the weights obtained by training on all examples except ⇡ (8) to

CSE 60963: Theory of Neural Networks Version of May 14, 2024

DR
AF
T

Chapter 2. Perceptrons 11

convergence.

E
h
I
h
~ (#+1)w(¬(#+1)) · x(#+1) 0

i i
= E

"
#+1’
8=1

1
+ 1

I
h
~ (8)w(¬8) · x(8) 0

i #

=
1

+ 1
E

"
#+1’
8=1
I
h
~ (8)w(¬8) · x(8) 0

i
| {z }

(⇤)

#
.

(2.21)

Let’s pause this for a moment and think about training the perceptron on all
(# + 1) examples. Let � be the set of indices 8 such that the perceptron makes a
mistake on ⇡ (8) at some point. We know that it makes at most '2/W2 mistakes,
so |� | '2/W2. For any 8 8 � , the perceptron never makes a mistake on ⇡ (8)

and therefore never updates its weights on ⇡ (8) , so we can remove ⇡ (8) from the
training data without any e�ect. Moreover, the converged perceptron classi�es
⇡ (8) correctly: ~ (8)w(¬8) · x(8) > 0.

Nowwe can return to (⇤). If 8 8 � , thenwhen⇡ (8) is held out as a test example,
it is correctly classi�ed. On the other hand, if 8 2 � , then when ⇡ (8) is held out as
a test example, it might be incorrectly classi�ed. Thus, (⇤) is no more than the
mistake bound for the perceptron trained on all (# + 1) examples, and we have

E
h
I
h
~ (#+1)w(¬(#+1)) · x(#+1) 0

i i
 1

+ 1
E

'2

W2

�
. (2.22)

⇤

CSE 60963: Theory of Neural Networks Version of May 14, 2024

DR
AF
T

Bibliography

Bertsekas, Dimitri P. (2015). Convex Optimization Algorithms. Athena Scienti�c.
Freund, Yoav and Robert E. Schapire (1999). Large margin classi�cation using the

perceptron algorithm. In: Machine Learning 37.3, pp. 277–296.
Hardt, Moritz and Benjamin Recht (2022). Patterns, Predictions, and Actions: Foun-

dations of Machine Learning. Princeton University Press.
Minsky, Marvin and Seymour A. Papert (1969). Perceptrons: An Introduction to

Computational Geometry. MIT Press.
Noviko�, A. (1962). On convergence proofs for perceptrons. In: Proceedings of the

Symposium on the Mathematical Theory of Automata.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information stor-

age and organization in the brain. In: Psychological Review 65.6, pp. 386–408.
Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning internal rep-

resentations by error propagation. In: Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition: Foundations. Ed. by David E. Rumel-
hart and James L. McClelland.

Vapnik, V. N. andA. Y. Chervonenkis (1974). Теория распознавания образов [The-
ory of Pattern Recognition]. Moscow: Nauka.

12

https://mlstory.org
https://mlstory.org
http://dx.doi.org/10.7551/mitpress/11301.001.0001
http://dx.doi.org/10.7551/mitpress/11301.001.0001
https://apps.dtic.mil/sti/tr/pdf/AD0298258.pdf
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.7551/mitpress/5236.003.0012
http://dx.doi.org/10.7551/mitpress/5236.003.0012

