
DR
AF
T

Chapter 3

Feedforward Neural
Networks

3.1 Model
A feedforward neural network (FFNN), or multilayer perceptron, is composed of
alternating linear layers and nonlinear activation functions.

De�nition 3.1. A linear layer is a function

lin : R3 ! R3 0

x 7! Wx + b (3.1)

with attributes

• 3 2 N, called the input size

• 3 0 2 N, called the output size

and parameters

• W 2 R3 0⇥3 , called the weights

• b 2 R3 0 , called the bias.

We’ll use an idiosyncratic notation when de�ning and using neural networks
(which should hopefully feel familiar, however, to anyone who has used Py-
Torch). If lin is a linear layer, wewrite lin.3 for its input size, lin.W for its weights,
and so on. In general, whenever we say that something is an “attribute” or “pa-
rameter” of a function, we use this dot notation to access it. A parameter of an
attribute is also a parameter.

13

DR
AF
T

Chapter 3. Feedforward Neural Networks 14

For the nonlinearities, several choices are common:

�5 0 5
0

0.5

1

�5 0 5
�1

0

1

logistic sigmoid function hyperbolic tangent
sigmoid(G) = 1

1+4�G tanh(G) = 4G�4�G
4G+4�G

�1 0 1
0

0.5

1

�1 0 1
�1

0

1

Heaviside step function sign function

step(G) =
(
0 if G < 0
1 if G � 0

sgn(G) =
(
�1 if G < 0
+1 if G � 0

�5 0 5
0

2

4

�1 0 1 2
0

0.5

1

recti�ed linear unit saturated linear unit
ReLU(G) = max{0, G} SLU(G) = max{0,min{1, G}}

When applied to vectors, they are applied component-wise. That is, if f is an

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 3. Feedforward Neural Networks 15

activation function, then

f
©≠≠
´

2666664

G1
...
G3

3777775
™ÆÆ
¨
=

2666664

f (G1)
...

f (G3)

3777775
. (3.2)

Although sigmoid is a traditional activation function, our preference will be for
ReLUs. They are often easier toworkwith in proofs, and they are also verywidely
used in practice.

De�nition 3.2. A feed-forward neural network (FFNN) with f activations (where
f is any activation function) is a function

�n : R3 ! R3 0

x 7! h(!) where

h(1) = f (lin1 (x))
...

h(!�1) = f (lin! (h(!�2)))
h(!) = lin! (h(!�1))

(3.3)

with attributes

• 3 > 0, 3 0 > 0, called the input and output size

• ! > 0, called the depth

• linear layers lin✓ for ✓ = 1, . . . , !, such that

lin1.3 = 3

lin8 .3 = lin✓�1.3 0 1 < 8  !

lin! .3 0 = 3 0 .

We call lin! the output layer and all other layers hidden layers. (Thus a
FFNN with depth ! has (! � 1) hidden layers.)

The maximum input/output size of any layer of �n is called the width of �n.

Note that the output layer does not have a nonlinearity; I’m not sure how
standard or nonstandard this is, but it’s convenient for us.

We call the components of h(✓) activation values.We also call thewhole vector
h(✓) an “activation value,” and sometimes an “activation vector” if we need to
emphasize that we’re talking about the whole vector. We sometimes call other
values computed by the network “activation values” as well.

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 3. Feedforward Neural Networks 16

3.2 Expressivity

3.2.1 Boolean functions
In Section 2.2, we showed that perceptrons can compute AND, OR, and NOT.
Unsurprisingly, FFNNs can as well, but we redo these examples using ReLUs and
using 0 for false and 1 for true.

Example 3.3. The Boolean operations AND, OR, and NOT can be computed by
FFNNs with ReLU activations. In the pictures below, nodes are units, edges are
connections with their weights, and numbers written next to nodes are biases.

AND OR NOT

G1 G2

�1
1

1 �21
1

~

1 �1

G1 G2

0
1

1 �11
1

~

1 �1

G1

~

1
�1

Example 3.4. Unlike perceptrons, FFNNs with ReLU activations can compute
XOR:

G1 G2

0

1

1 �1
1 1

�11

1

~

1 �2 1

Note that XOR(G1, G2) = OR(G1, G2) � AND(G1, G2).

Theorem 3.5. Any Boolean function can be computed by a FFNN with ReLU ac-
tivations.

Proof. Just use the above constructions for AND, OR, and NOT. In fact, a two-
layer network su�ces. Any Boolean function 5 can be converted to disjunctive

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 3. Feedforward Neural Networks 17

normal form (DNF), that is,

5 (G1, . . . G=) = q1 _ · · · _ q; (3.4)
q8 = q81 ^ · · · ^ q8<8 8 2 [;] (3.5)

where each q8 9 is one of the G: or its negation. Furthermore, any 5 can be con-
verted into canonical DNF, where for all values of G1, . . . , G= , at most one of the
clauses q8 is true. Then we can construct a 2-layer FFNN �n with ReLU activa-
tions:

⌘ 9 = ReLU

 ’
:

; 9: �<8 + 1

!
(3.6)

; 9: =

(
G: q 9: = G:
1 � G: q 9: = ¬G:

(3.7)

~ =
’
9

⌘ 9 . (3.8)

⇤

3.2.2 Continuous functions
Theorem 3.6 (Arora et al., 2018). FFNNs with ReLU activations compute exactly
the set of continuous piecewise linear functions with a �nite number of pieces.

Proof. We only prove the univariate (3 = 1) case, which is easy and will come in
handy later. Assume that 5 has the form:

5 (G) =

8>>>>>>>><
>>>>>>>>:

<0G + 10 G < 01
<1G + 11 01  G < 02

...

<:�1G + 1:�1 0:�1  G < 0:
<:G + 1: 0:  G .

(3.9)

where<8�108 + 18�1 =<808 + 18 for all 8 .
The �rst piece is made of a ReLU �ipped left-to-right:

G

�01
�1

5 (01)
�<0

01

5 (01)
(3.10)

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 3. Feedforward Neural Networks 18

For each middle piece (8 = 1, . . . ,: � 1), we add in a “wedge” (also known as
a saturated linear unit, or SLU) like this:

G

�08

1

�08+1

1

<8 �<8

08 08+1

0

5 (08+1) � 5 (08)

(3.11)

Finally, we add in one more ReLU for the last piece:

G

�0:
1

<:

0:

0
(3.12)

⇤

De�nition 3.7. A function 5 : R3 ! R is d-Lipschitz-continuous if there is a d
such that |5 (x + h) � 5 (x) |  d khk for all x and h.

Theorem 3.8. For any d-Lipschitz-continuous function 5 : [0, 1] ! R and any
n > 0, there is a FFNN �n with two layers and ReLU activations, such that for all
G 2 [0, 1], |5 (G) � �n(G) |  n .

Proof. This proof is adapted from Telgarsky (2021), but uses ReLU instead of sgn
activations. The idea is to choose a X depending on n and construct a piecewise
linear function that goes through all the points (8X, 5 (8X)) for all 8 such that 0 
8X  1.

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 3. Feedforward Neural Networks 19

0 0.2 0.4 0.6 0.8 1
�1

0

1

2

Choose X = n/(2d), and use Theorem 3.6 to construct the FFNN �n to go
through all points (8, X, 5 (8X)) for all 8 such that 0  8X  1; the �rst and last
pieces can just be horizontal. If �n(8X) = 5 (8X), then for any G 2 [8X, (8 + 1)X],
we have |�n(G) � 5 (G) |  |�n(G) � 5 (8X) | + |5 (8X) � 5 (G) |  n/2 + n/2 = n . ⇤

Theorem 3.9. For any d-Lipschitz-continuous function 5 : [0, 1]3 ! R and any
n > 0, there is a FFNN �n with three layers and ReLU activations, such that for all
G 2 [0, 1]3 , |5 (G) � �n(G) |  n .

Proof. This proof is similar to the previous one, but requires an additional hidden
layer. Choose X = n/(2d

p
3).

We just show how to construct �n for 3 = 2. Generalizing to 3 > 2 is not
di�cult. De�ne a two-dimensional wedge, B01,02 , with height 1:

G1 G2

01

�1
02

�1

1

B01,02 (G1, G2)

� 1
X � 1

X

G1

G2

~

0101 � X

02
02 � X

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 3. Feedforward Neural Networks 20

We can linearly combine the wedges like this:

�n(G1, G2) =
’
8

’
9

28 9B8X, 9X (G1, G2). (3.13)

To make �n to equal 5 at all points (8X, 9X) where 8 and 9 are integers, we must
have

28 9 = �
’

80=0,...,8
9 0=0,..., 9

(80, 9 0)<(8, 9)

280 9 0 + 5 (8X, 9X). (3.14)

⇤

3.2.3 The universal approximation theorem

Theorem 3.10 (Stone–Weierstrass). Let F be a family of functions R3 ! R such
that

1. Each 5 2 F is continuous.

2. For all G 2 R3 , there is an 5 2 F such that 5 (G) < 0.

3. For all G < G 0 2 R3 , there is an 5 2 F such that 5 (G) < 5 (G 0).

4. If 5 ,6 2 F , then 5 + 6 2 F , 5 6 2 F , and 2 5 2 F for 2 2 R.

ThenF is universal in the following sense: For any continuous function6 : [0, 1]3 !
R and n > 0, there is an 5 2 F such that for all x 2 [0, 1]3 , |5 (G) � 6(G) |  n .

Hornik et al. (1989) originally proved that FFNNs with cos activations are
universal, but exp is easier (doesn’t require you to remember your trigonometry
identities) and also more plausible as an activation function.

Theorem 3.11 (Telgarsky, 2021). FFNNs with exp activations are universal.

Proof. Without loss of generality, we can ignore biases (b). Let

5 (x) = u · expUx (3.15)
6(x) = v · expVx. (3.16)

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 3. Feedforward Neural Networks 21

Closure under scalar multiplication and addition are easy, and would work for
any activation function:

(2 5) (x) = 2 5 (x) (3.17)
= 2u · expUx (3.18)

(5 + 6) (x) = 5 (x) + 6(x) (3.19)
= u · expUx + v · expVx (3.20)

=

u
v

�
· exp


U
V

�
x. (3.21)

Closure under multiplication relies on the fact that exp0 exp1 = exp(0 + 1) for
any 0, 1:

(5 6) (x) = 5 (x) 6(x) (3.22)
= (u · expUx) (v · expVx) (3.23)

=

 ’
8

u[8] exp(Ux) [8]
! ’

8

v[8] exp(Vx) [8]
!

(3.24)

=
’
8

’
80

u[8]v[80] exp(Ux) [8] exp(Vx) [80] (3.25)

=
’
8

’
80

u[8]v[80] exp((Ux) [8] + (Vx) [80]) (3.26)

=
’
8

’
80

u[8]v[80] exp(U[8, :] + V[80, :])x (3.27)

which does belong to F . ⇤

Theorem 3.12 (Hornik et al., 1989). Let f be any continuous, nondecreasing func-
tion such that

lim
I!�1

f (I) = 0 (3.28)

lim
I!+1

f (I) = 1. (3.29)

Then FFNNs with two layers and f activations are universal.

Cybenko (1989) proved a similar theorem, but it requires some more ad-
vanced math.

Proof. The proof uses three nested approximations. First, by Theorem 3.11, any
continuous function can be approximated by a linear combination of exp units.
Second, by Theorem 3.6, exp can be approximated by a linear combination of

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 3. Feedforward Neural Networks 22

wedges (Eq. (3.11)). Third, a wedge can be approximated by an appropriately
transformed f .

Let 5 : R3 ! R be the function we are trying to approximate. For the �rst
approximation, by Theorem 3.11, there is a FFNN �n with 2 layers and exp acti-
vations, such that, for all x 2 [0, 1]3 ,

|�n(x) � 5 (x) |  n

3
. (3.30)

The next step will be to approximate the exps, but we need two pieces of
information from the �rst approximation. What interval will we need to approx-
imate exp on? Let

A = max
8

 ’
9

|�n.lin1 .W[8, 9] | + |�n.lin1 .b[8] |
!

(3.31)

so that the range of the �rst a�ne transformation is at most [�A , A]. How good
does the approximation need to be? Let < =

Õ
8 |�n.lin2 .W[1, 8] |, the total am-

plitude of all the exps. We want the total error due to approximating the exps to
be at most n/3, so we need exp to be approximated with error at most n/(3<).

The remaining approximations are pictured below.

0 2 4 6 8 10

0

0.5

1

1.5

2

·104
exp
ReLU FFNN
f FFNN

For the second approximation, by Theorem 3.8, there is a linear combination
of : wedges that approximates exp(I) for I 2 [�A , A] with error n/(3<). Observe
that to get this approximation, the only assumption we made about the shape of
a wedge B0,1 is that B0,1 (0) = 0, B0,1 (1) = 1, and for I 2 [0,1], B0,1 (I) 2 [0, 1].
Now f satis�es the last condition, so in the third approximation, we will only

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 3. Feedforward Neural Networks 23

have to worry about the error for I  0 and I � 1. Since each wedge is scaled to
have height at most n/(3<), and we want to limit the remaining error to n/(3<),
we need the height-1 wedge to be approximated with error at most 1/: .

For the third approximation, by the de�nition of f , there exists an � such
that f (�)  1/: and ⌫ such that f (⌫) � 1 � 1/: . Then for any 0,1, let

B̂0,1 (I) = f
⇣I � 0

1 � 0
(⌫ ��) +�

⌘
(3.32)

so that if I  0 or I � 1, then |B̂0,1 (I) � B0,1 (I) |. In other words, f can always
be squashed (horizontally) so that it has small enough error outside the interval
(0,1).

0

1

f

{

0 1

0
1/:

1 � 1/:
1

B̂

⇤

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Bibliography

Arora, Raman, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee (2018). Un-
derstanding deep neural networks with recti�ed linear units. In: Proceedings
of ICLR.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
In: Math. Control Signal Systems 2, pp. 303–314.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). Multilayer feed-
forward networks are universal approximators. In:Neural Networks 2.5, pp. 359–
366.

Telgarsky, Matus (2021). Deep learning theory lecture notes. Unpublished lecture
notes.

24

https://openreview.net/forum?id=B1J_rgWRW
https://openreview.net/forum?id=B1J_rgWRW
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
https://mjt.cs.illinois.edu/dlt

