
DR
AF
T

Chapter 4

Recurrent Neural Networks

4.1 Model
De�nition 4.1. A simple RNN (Elman, 1990) with f activations (where f is any
activation function) is a length-preserving function

rec : (R3)⇤ lp! (R3 0)⇤

(x(1) , . . . , x())) 7! (h(1) , . . . h())) (4.1)

where

h(0) = s (4.2)

h(C) = f
⇣
Vh(C�1) +Wx(C) + b

⌘
C = 1, . . . ,) (4.3)

with parameters

s 2 R3 0

V 2 R3 0⇥3 0

W 2 R3 0⇥3

b 2 R3 0

and attributes:

• 3 is the input size

• 3 0 is the output size.

25

DR
AF
T

Chapter 4. Recurrent Neural Networks 26

To use a simple RNN as a function on ⌃⇤, we represent each symbol by a one-
hot vector. To use it to output an accept/reject decision, we use a linear output
layer:

5 = out � rec (4.4)

where rec is a simple RNN and out is a linear layer

out : R3
0 ! R

h(C) 7! w · h(C) + 1 (4.5)

with parameters

w 2 R3 0

1 2 R.

Then if the output is 0, reject, and if 1, accept. But we will consider other varia-
tions below.

4.2 Expressivity

4.2.1 Integer-weight RNNs
The connection between RNNs and �nite automata goes all the way back to the
beginning; McCulloch and Pitts (1943) called RNNs “nerve nets with circles,” and
Kleene (1956) reformulated them as �nite automata.

But Kleene envisioned an RNN where h(C) is an arbitrary Boolean function
of h(C�1) and x(C) . In a simple RNN it is not, which raises a question about its
expressivity:

Example 4.2 (Goudreau et al., 1994). De�ne the language

PARITY = {F 2 {0, 1}⇤ | F has an odd number of 1’s}. (4.6)

At each time step C , the vector h(C) must be able to distinguish between whether
the string so far is in PARITY or not. This means that the transition function has
to compute h(C) as the XOR of h(C�1) and FC . Since the transition function of a
simple RNN is a single-layer FFNN, and single-layer FFNN cannot compute the
XOR function (Theorem 2.3), can a simple RNN recognize PARITY?

Fortunately, the answer is yes, and indeed a simple RNN can simulate any
�nite automaton, as long as it is coupled with an output layer.

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 4. Recurrent Neural Networks 27

Theorem 4.3 (Minsky, 1967). Any regular language can be recognized by a net-
work 5 = out � rec, where rec is a simple RNN with integer weights and ReLU
activations, and out is a linear layer.

Tentative proof. Let ! be a regular language over an alphabet ⌃, and let ! be rec-
ognized by a DFA" with states& = {@1, . . . ,@ |& | }, start state @1, transition func-
tion X : & ⇥ ⌃ ! & , and accept states � . Number the symbols of ⌃ as 01, . . . ,0 |⌃ | .

As an initial attempt, de�ne

5 = out � rec (4.7)

rec : (R |⌃ |)⇤ ! (R |& |)⇤

(x(1) , . . . , x())) 7! (h(1) , . . . , h())) (4.8)

h(0) [8] = I[8 = 1] 8 2 [|& |] (4.9)

g(C) [8, 9] = h(C�1) [8] ^ x(C) [9] C 2 [)], 8 2 [|& |], 9 2 [|⌃|] (4.10)

h(C) [:] =
’

82 [|& |], 92 [|⌃ |]
X (@8 ,0 9)=@:

g(C) [8, 9] C 2 [)],: 2 [|& |] (4.11)

out : R |& | ! R
h(C) 7!

’
82 [|& |]
@8 2�

h(C) [8] C 2 [)] . (4.12)

But this doesn’t work, because each step of 5 .rec has two layers (Eqs. (4.10)
and (4.11)). The trick is to cut apart the two layers and move the second layer
(which is just a linear transformation) to the following time step, where it can
be merged into a single layer (because a linear transformation composed with a
linear transformation is a linear transformation). To do this, I think it’s conve-
nient to pause this proof and �rst prove a more general lemma, which will also
be useful later. ⇤

Lemma 4.4. Let 5 be a length-preserving function

5 : (R3in)⇤ lp! (R3out)⇤

(x(1) , . . . , x())) 7! (y(1) , . . . , y())) (4.13)

h(0) = s (4.14)

h(C) = step(h(C�1) , x(C)) C 2 [)] (4.15)

y(C) = out (h(C)) (4.16)

where s 2 R3 , step : R3 ⇥ R3in ! R3 is any continuous piecewise linear function
with a �nite number of pieces, and out : R3 ! R3out is an a�ne transformation.

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 4. Recurrent Neural Networks 28

Then there is a network 6 = out � rec, where 6.rec : (R3in)⇤ ! (R3 0)⇤ is a simple
ReLU RNN and 6.out : R3 0 ! R3out is a linear layer, that is equal to 5 .

Proof. By Theorem 3.6, 5 .step can be computed by a FFNN

5 .step : R3 ⇥ R3in ! R3

(h(C�1) , x(C)) 7! h(C) (4.17)

h(C) = UReLU(Vh(C�1) +Wx(C) + b). (4.18)

Without loss of generality, we can assume that the second layer (U) doesn’t have a
bias term. This doesn’t have the form thatwe need for6.rec, because of the second
layer. But (as mentioned above) the trick is to cut apart the two layers and move
the second layer (which is just a linear transformation) to the following time
step, where it can be merged into a single layer (because a linear transformation
composed with a linear transformation is a linear transformation). We just have
to be careful with the �rst time step, because there was no previous time step to
inherit a U from.

6.rec : (R3in)⇤ lp! (R3 0)⇤

(x(1) , . . . , x())) 7! (h(1) , . . . , h())) (4.19)

h(0) =

1
0

�
(4.20)

h(C) = ReLU
✓

0 0
V(5 .s) VU

�
h(C�1) +

0
W

�
x(C) +

0
b

� ◆
C 2 [)]

(4.21)

6.out : R3
0 ! R3out

h(C) 7! 5 .out (
⇥
0 U

⇤
h(C)). ⇤

Proof of Theorem 4.3. In our initial attempt, the step function (Eqs. (4.10) and (4.11))
is continuous piecewise linear with a �nite number of pieces; indeed, it’s already
a two-layer FFNN. So we can use Lemma 4.4 to convert it into a simple RNN. ⇤

Do simple RNNs recognize only regular languages? It depends. If we restrict
the weights and/or activation functions appropriately, then yes.

Theorem 4.5. Any network 5 = out � rec, where rec is a simple RNN with in-
teger weights and SLU activations, and out is a linear layer, recognizes a regular
language.

Proof. Because all weights are integers, all activation values will also be integers,
and the h(C) for C > 0will have components all in {0, 1}. Therefore there is a DFA
with 23 states that simulates 5 . ⇤

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 4. Recurrent Neural Networks 29

4.2.2 Rational weight RNNs with intermediate steps
If we allow an arbitrary-precision numeric representation, then the power of
RNNs increases. In fact, if we allow the RNN to run for a number of intermedi-
ate steps after the end of the input string but before delivering an accept/reject
decision, it can simulate a Turing machine.

Theorem 4.6 (Siegelmann and Sontag, 1995). For any Turing machine " with
input alphabet ⌃, there is a network 5 = out � rec, where rec is a simple RNN with
rational weights and ReLU activation functions, and out is an a�ne transformation,
that is equivalent to" in the following sense: for any stringF 2 ⌃⇤,

• If" halts and accepts on inputF , then there is a) such that for all 0 < C <) ,
5 (F · EOSC) = 0 and 5 (F · EOS)) = 1.

• If" halts and rejects on inputF , then there is a) such that for all 0 < C <) ,
5 (F · EOSC) = 0 and 5 (F · EOS)) = �1.

• If" does not halt on inputF , then for all C > 0, 5 (F · EOSC) = 0.

Proof. We adapt Siegelmann and Sontag’s proof to use the de�nition of Turing
machine by Sipser (2013) and our de�nition of RNN above.

If �" is"’s tape alphabet, let � = �" [{$}, where $ is a symbol not already
in �" , which we will use as a bottom-of-stack marker. Number the symbols of
� as 01,02, . . . ,0 |� | . To represent "’s tape (which has a leftmost cell but extends
in�nitely to the right), we use two stacks ✓, A 2 �⇤. The stacks ✓ = ✓1 · · · ✓|✓ | and
A = A1 · · · A |A | represent the tape

✓|✓ |✓|✓ |�1 · · · ✓2✓1A1A2 · · · A |A |�1A |A |�� · · ·

and the head is over symbol A1.
Then we encode a stack as a vector of |� | rational numbers using the follow-

ing mapping:

stack : �⇤ ! Q |� |

stack(n) = 0 (4.22)
stack(0 9 · I) = 2

3e9 + 1
3 stack(I). (4.23)

For each 0 2 �, this encoding puts a “margin” between stacks without an 0 on
top and stacks with an 0 on top, so that a SLU network can distinguish them:

0 1
3

2
3

1

no 0 on top 0 on top

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 4. Recurrent Neural Networks 30

(The set of possible values is known as the Cantor set.)
Then the basic stack operations can be implemented as follows:

push(z,0 9) = 2
3e9 + 1

3z (4.24)
top(z) = SLU(3z � 1) (4.25)
pop(I) = 3I � SLU(3z � 1) . (4.26)

Let &" be the states of " . Let & contain two new states @1 and @2, which
aren’t used by" itself, but by a preprocessing step. Then, number the rest of the
states starting with the start state @3, then @4,@5, . . . ,@ |& |+2.

The hidden vectors of the RNN are

h(C) =
266664
q(C)
l(C)
r(C)

377775
(4.27)

where q(C) is the one-hot vector of the current state, and l(C) and r(C) are the left
and right stacks, respectively.

The initial vector is

h(0) =
266664

e1
stack($)
stack(�$)

377775
. (4.28)

We initialized both stacks with a $ on the bottom, and put an extra blank in the
right stack, because it will be convenient later to assume that we never have two
empty stacks.

We’ve shown previously (Example 3.3) how to de�ne Boolean operators using
ReLUs; we also need

if(2, C) = SLU(C � 1 + 2) if 2 then C else 0 (4.29)

The recurrent step is a big piecewise linear function. We break it up into four
pieces:

step ©≠
´
266664
q
l
r

377775
, x™Æ
¨
= load ©≠

´
266664
q
l
r

377775
, x™Æ
¨
+ rewind ©≠

´
266664
q
l
r

377775
™Æ
¨
+ le� ©≠

´
266664
q
l
r

377775
™Æ
¨
+ right ©≠

´
266664
q
l
r

377775
™Æ
¨
. (4.30)

The �rst term initially loads the input string onto the tape, from left to right:

load ©≠
´
266664
q
l
r

377775
, x™Æ
¨
= if ©≠

´
q = @1 ^ x < EOS,

266664
@1

push(l, x)
r

377775
™Æ
¨

+ if ©≠
´
q = @1 ^ x = EOS,

266664
@2
l
r

377775
™Æ
¨
. (4.31)

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 4. Recurrent Neural Networks 31

The second term just rewinds the head back to the left end of the tape:

rewind ©≠
´
266664
q
l
r

377775
™Æ
¨
= if ©≠

´
q = @2 ^ top(l) < $,

266664
@2

pop(l)
push(r, top(l))

377775
™Æ
¨

+ if ©≠
´
q = @2 ^ top(l) = $,

266664
@3
l
r

377775
™Æ
¨
. (4.32)

The third term handles all the left-moving transitions:

le� ©≠
´
266664
q
l
r

377775
™Æ
¨
=

’
(@,0!@0,00,L)2X

22�\{$}

if ©≠
´
q = @ ^ top(r) = 0 ^ top(l) = 2,

266664
@0

pop(l)
push(r, 2)

377775
™Æ
¨

+
’

(@,0!@0,00,L)2X
if ©≠
´
q = @ ^ top(r) = 0 ^ top(l) = $,

266664
@0

push(pop(l), 2)
r

377775
™Æ
¨
.

(4.33)

The last term handles all the right-moving transitions:

right ©≠
´
266664
q
l
r

377775
™Æ
¨
=

’
(@,0!@0,00,R)2X

if ©≠
´
q = @ ^ top(r) = 0,

266664
@0

push(l,00)
pop(r)

377775
™Æ
¨

+
’

(@,�!@0,00,R)2X
if ©≠
´
q = @ ^ top(r) = $,

266664
@0

push(l,00)
r

377775
™Æ
¨
. (4.34)

Siegelmann and Sontag (1994) give essentially the above step, which turns out
to have four layers, and then construct an RNN that takes four steps to simulate
one step of" . They then give a more complicated direct construction of an RNN
that only takes one step to simulate each step of" . But here, we use Lemma 4.4
to construct a simple RNN with a recurrent step equivalent to step. ⇤

If the number of intermediate steps is bounded by) (=), then the number of
simulated steps of the Turing machine is also bounded by) (=). So we can obtain
many other equivalences. For example, RNNs that run for a �nite number of steps
recognize exactly the decidable languages, and RNNs that run for a polynomial
number of steps recognize exactly the languages in P.

4.2.3 Real-weight RNNs with intermediate steps
The last result we look at is purely theoretical: If we allow an RNN to have real
weights, how powerful is it?

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 4. Recurrent Neural Networks 32

Theorem 4.7 (Siegelmann and Sontag 1994). For any language ! over ⌃, there is
a network 5 = out � rec, where rec is a simple RNN with rational weights and ReLU
activation functions, and out is a linear layer, such that decides ! in the following
sense: for any stringF 2 ⌃⇤,

• If F 2 !, then there is a) such that for all 0 < C <) , 5 (F · EOSC) = 0 and
5 (F · EOS)) = 1.

• If F 8 !, then there is a) such that for all 0 < C <) , 5 (F · EOSC) = 0 and
5 (F · EOS)) = �1.

Siegelmann and Sontag (1994) prove amore precise result relating complexity
classes of real-weight RNNs with complexity classes of circuits, which we will
encounter in Section 5.2. But their paper is most often cited simply for the claim
we have stated above, and we give a much simpler proof here.

Proof. We have already seen how to encode a string over ⌃ as a vector of |⌃|
rational numbers. Under the same encoding, we can encode an in�nite string as
a vector of real numbers. Let’s think of an in�nite string over ⌃ as a mapping
F : N>0 ! ⌃, that is,F (C) is the symbol at position C . Then

stack(F) =
1’
C=1

2
3C
eF (C) . (4.35)

Given a language !, we can enumerate the strings of ! in order of increasing
length, as F (1) ,F (2) , Then we can concatenate them into a single in�nite
string, h!i = F (1)#F (2)# · · · . For example, if ! = {FF | F 2 {a, b}⇤}, then

h!i = #aa#bb#aaaa#abab#baba#bbbb#aaaaaa# · · · .

The stack operations are de�ned exactly as before.
The construction in the proof of Theorem 4.6 can be modi�ed to simulate a

Turing machine with two tapes (or a tape and a stack is enough): the �rst tape is
as before, while the second tape is initialized with h!i. Then construct an RNN
that simulates the Turing machine" = “On inputF :

1. Compare the string on the �rst tape (F) with the string on the second tape,
starting from the current position up to (but not including) #.

2. If they are equal, accept.

3. IfF is shorter than the other string, reject.

4. Otherwise, move the �rst head back to the left end, move the second head
immediately to the right of the #, and goto 1. ⇤

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Bibliography

Elman, Je�rey L. (1990). Finding structure in time. In:Cognitive Science 14, pp. 179–
211.

Goudreau, Mark W., C. Lee Giles, Srimat T. Chakradhar, and D. Chen (1994).
First-order versus second-order single-layer recurrent neural networks. In:
IEEE Transactions on Neural Networks 5.3, pp. 511–513.

Kleene, S. C. (1956). Representation of events in nerve nets and �nite automata.
In: Automata Studies. Ed. by C. E. Shannon and J. McCarthy. Vol. 34. Annals
of Mathematics Studies. Princeton University Press, pp. 3–42.

McCulloch, Warren andWalter Pitts (1943). A logical calculus of ideas immanent
in nervous activity. In: Bulletin of Mathematical Biophysics 5, pp. 127–147.

Minsky, Marvin L. (1967). Computation: Finite and In�nite Machines. Prentice-
Hall.

Siegelmann, Hava T. and Eduardo D. Sontag (1994). Analog computation via neu-
ral networks. In: Theoretical Computer Science 131.2, pp. 331–360.

— (1995). On the computational power of neural nets. In: Journal of Computer
and System Sciences 50.1, pp. 132–150.

Sipser, Michael (2013). Introduction to the Theory of Computation. 3rd. Cengage
Learning.

33

http://dx.doi.org/10.1109/72.286928
https://www.jstor.org/stable/j.ctt1bgzb3s.4
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
https://archive.org/details/computationfinit0000mins
http://dx.doi.org/10.1016/0304-3975(94)90178-3
http://dx.doi.org/10.1016/0304-3975(94)90178-3
http://dx.doi.org/https://doi.org/10.1006/jcss.1995.1013

