
DR
AF
T

Chapter 5

Automata, Circuits, and
Logic

Although RNNs aligned fairly well with various automata that are taught in The-
ory of Computing or equivalent undergraduate courses, the same is not true of
transformers. So we need to introduce some new concepts. In this chapter, we’ll
learn about a subclass of regular languages called the star-free regular languages
Section 5.1, which can be characterized by subclasses of �nite automata and reg-
ular expressions, as well as by two logics, �rst-order logic and linear tempo-
ral logic. Then, we’ll learn about a new model of computation, Boolean circuits
(Section 5.2). Finally, we’ll learn about some extensions to �rst-order logic (Sec-
tion 5.3).

5.1 Star-free regular languages
Star-free languages are called that because they are described by star-free regular
expressions. Although we won’t use star-free regular expressions later, we might
as well explain where the name comes from.

The syntax of star-free regular expressions over a �nite alphabet ⌃ is de�ned
in BNF as:

U ::= ;
| n
| f f 2 ⌃

| U1 [U2
| U1U2
| UC

(5.1)

34

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 35

Example 5.1. Let ⌃ = {a, b}.

• ⌃⇤ is star-free because ⌃⇤ = ;C.

• (ab)⇤ is star-free because (ab)⇤ = (b⌃⇤ [⌃⇤a [⌃⇤aa⌃⇤ [⌃⇤bb⌃⇤)C.

• (aa)⇤ is regular but not star-free.

For more on star-free languages, see the survey by Pin (2020).

5.1.1 Counter-free automata

De�nition 5.2. Let " = (&, ⌃, X,@0, �) be a DFA. De�ne the relation @
F�! A ,

where @, A 2 & andF 2 ⌃⇤, to mean “If" is in state @ and reads stringF , then it
ends up in state @.” That is:

• @
n�! @

• @
0E��! B i�, for some A , X (@,0) = A and A

E�! B .

We say that" is counter-free i� there is an # such that for allF 2 ⌃⇤ and = � # ,

the relations
F=

��! and
F=+1
����! are the same.

Example 5.3. Intuitively, a counter-free DFA is one that can test whether some-
thing happens, but not how many times it happens. For every cycle @

F�! @, F
cannot be written as G: where G 2 ⌃⇤ and : > 1.

(a) The following DFA, which recognizes (ab)⇤, is counter-free:

@1 @2

@3

a

b

b

a

a, b

This DFA is counter-free, because the only cycles are on ab (from @1 to
itself), a and b (from @3 to itself), and none of these strings is of the form
G: for : > 1.

(b) The following DFA, which recognizes (aa)⇤, is not counter-free:

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 36

@1 @2

@3

a

b

a

b

a, b

This is not counter-free, because it has a cycle on aa, which is a2.

Theorem5.4 (Schützenberger, 1965;McNaughton and Papert, 1971). A language
! is star-free regular if and only if its minimal DFA is counter-free.

So in Example 5.3(b), the fact that the DFA shown is minimal and not counter-
free shows that (aa⇤) is not star-free.

5.1.2 First-order logic
A formal language can also be de�ned as a set of �nite strings that satisfy a closed
formula of a logic. This chapter is a very expanded version of Section 5.3 of the
survey by Strobl et al. (2024); for more information, see the handbook chapter by
Thomas (1997).

Although it will not become important until later, we number the positions
of a string starting from 0, soF = F0F1 · · ·F=�1.

Example 5.5. Let ⌃ = {a, b}. The formula

q = 8G .8~ .&a (G) ^&b (~) ! G < ~ (5.2)

de�nes the regular language a⇤b⇤. The variables (G ,~) are interpreted as positions
of a stringF , and&a (8) is true i�F8 = a and&b (8) is true i�F8 = b. So the formula
says that every amust precede every b, which is true i� the string matches a⇤b⇤.

We �rst de�ne the syntax of �rst-order logic with order (FO).

De�nition 5.6. The formulas of FO are given by the BNF grammar:

q ::= &f (G) f 2 ⌃

| G = ~ | G < ~

| q1 ^ q2 | q1 _ q2 | ¬q1

| 8G .q1 | 9G .q1

(5.3)

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 37

where G,~, . . . are variables. The free variables of a formula are de�ned as follows:

FV(&f (G)) = {G} f 2 ⌃

FV(G = ~) = {G,~}
FV(G < ~) = {G,~}

FV(q1 ^ q2) = FV(q1) [FV(q2)
FV(q1 _ q2) = FV(q1) [FV(q2)

FV(¬q1) = FV(q1)
FV(8G .q1) = FV(q1) \ {G}
FV(9G .q1) = FV(q1) \ {G}.

(5.4)

A formula is closed if it has no free variables. For example, FV(9~.G < ~) = {G},
while the formula in Eq. (5.2) is closed.

We use a number of shorthand notations:

q1 ! q2 = ¬q1 _ q2 implication (5.5)
q1 $ q2 = (q1 ! q2) ^ (q2 ! q1) if and only if (5.6)
q1 � q2 = ¬(q1 $ q2) exclusive or (5.7)

The semantics of FO de�nes whether formulas are true in various logical
structures. Here, we are only interested in logical structures that correspond to
strings. So we skip the de�nition of logical structure and go straight to the de�-
nition of whether a formula is true for a string.

De�nition 5.7. Let F = F0 · · ·F=�1 be a string over ⌃, and let � be an interpre-
tation, or a mapping from variables to {0, . . . ,= � 1}. We de�neF , � |= q (“F and
� satisfy q”) as follows:

F , � |= &f (G) ifF� (G) = f

F , � |= G = ~ if � (G) = � (~)
F , � |= G < ~ if � (G) < � (~)
F , � |= q1 ^ q2 ifF , � |= q1 andF , � |= q2 [�]
F , � |= q1 _ q2 ifF , � |= q1 orF , � |= q2

F , � |= ¬q1 ifF , � 6|= q1

F , � |= 8G .q1 ifF , � [G 7! 8] |= q1 for all 8 2 {0, . . . ,= � 1}
F , � |= 9G .q1 ifF , � [G 7! 8] |= q1 for some 8 2 {0, . . . ,= � 1}

(5.8)

Above, the notation � [G 7! 8] stands for the mapping that sends G to 8 , and sends
any other variable ~ to � (~).

If F , � |= q , and q is a closed formula, we can simply write F |= q . The
language de�ned by a closed formula q is !(q) = {F 2 ⌃⇤ | F |= q}.

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 38

Example 5.8. Let q be as in Eq. (5.2). Here are some examples of strings and
interpretations that do or don’t satisfy q :

abb, {G 7! 0} |= &a (G)
abb, {~ 7! 0} 6|= &b (~)
abb, {~ 7! 1} |= &b (~)
abb, {~ 7! 2} |= &b (~)

abb, {G 7! 0,~ 7! 0} 6|= G < ~

abb, {G 7! 0,~ 7! 1} |= G < ~

abb, {G 7! 0,~ 7! 2} |= G < ~

abb, {G 7! 0,~ 7! 0} |= &a (G) ^&b (~) ! G < ~

abb, {G 7! 0,~ 7! 1} |= &a (G) ^&b (~) ! G < ~

abb, {G 7! 0,~ 7! 2} |= &a (G) ^&b (~) ! G < ~

abb, {G 7! 0} |= 8~.&a (G) ^&b (~) ! G < ~

Example 5.9. As a slightly more complicated example of what can be de�ned
in FO, let

FIRST(G) = ¬9~.~ < G (5.9)
SUCC(G,~) = G < ~ ^ ¬9I.G < I < ~ (5.10)

LAST(G) = ¬9~.~ > G (5.11)

Then

q = (8G .FIRST(G) ! &a (G))
^ (8G .8~.SUCC(G,~) ! ((&a (G) ^&b (~)) _ (&b (G) ^&a (~))))
^ (8~.LAST(G) ! &b (G))

(5.12)

de�nes the language (ab)⇤.

Theorem 5.10 (McNaughton and Papert, 1971). FO de�nes exactly the class of
star-free regular languages.

5.1.3 Linear temporal logic
In linear temporal logic (Kamp, 1968), every formula implicitly depends on a sin-
gle time (or position). Here, we use the variant called past temporal logic or PTL,
which is as expressive as the full version (Gabbay et al., 1980).

Example 5.11. Let ⌃ = {a, b, #}.

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 39

• The formula

q = &# (5.13)

de�nes the language ⌃⇤#, which contains all and only strings with a # in
the last position.

• The formula

q = &# ^ (&b since &#) (5.14)

de�nes the language ⌃⇤#b⇤#. (“The last symbol is #, and ever since the
previous #, it’s been all b’s.”)

• The formula

q = &# ^ (&b since (&# ^ (&a since &#))) (5.15)

de�nes the language ⌃⇤#a⇤#b⇤#.

The syntax of PTL is de�ned as follows:

q ::= &f f 2 ⌃

| q1 ^ q2 | q1 _ q2 | ¬q1

| q1 since q2

(5.16)

For any input string F = F0 · · ·F=�1 and position 8 2 {0, . . . ,= � 1}, we de�ne
F , 8 |= q as follows:

F , 8 |= &f ifF8 = f

F , 8 |= q1 ^ q2 ifF , 8 |= q1 andF , 8 |= q2

F , 8 |= q1 _ q2 if eitherF , 8 |= q1 orF , 8 |= q2

F , 8 |= ¬q1 ifF , 8 6|= q1

F , 8 |= q1 since q2 if there is a 9 < 8 such thatF , 9 |= q2, and
for all : such that 9 < : < 8 , we haveF ,: |= q1

(5.17)

To use a formula q of PTL to de�ne a language over ⌃, for a F 2 ⌃⇤ of length =
we supply F as input and designate the last position as the output position, so
thatF 2 L(q) if and only ifF ,= |= q .

Theorem 5.12 (Kamp 1968; Gabbay et al. 1980). PTL de�nes the exactly the class
of star-free regular languages.

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 40

5.2 Circuit complexity
This section is an expanded version of Section 5.2 of the survey by Strobl et al.
(2024). For more details, please see the textbook by Arora and Barak (2009).

For the rest of this chapter, we deal a lot with bits. We write log= for dlog2 =e,
which is the number of bits needed to represent a number in {0, . . . ,= � 1}.

Circuits operate on binary values, so for the rest of this section, we assume
⌃ = {0, 1}. (If we want to use circuits to model sets of strings over an alphabet ⌃,
we can choose a �xed-length encoding of the symbols of ⌃ as strings of1 = log |⌃|
bits and encode the value of the 8-th input symbol into positions 81 to 81+ (1�1).)
Example 5.13. Here’s a circuit with input length 2. It computes the XOR func-
tion. We draw the inputs at the bottom and the output at the top.

B1 B2

_ ^

¬

^
C

De�nition 5.14. A (Boolean) circuit ⇠ with input length = is a directed acyclic
graph with= input nodes B1, . . . , B= , with fan-in (in-degree) zero, and zero or more
gate nodes, each labeled with one of the following functions:

• NOT (¬), with fan-in one.

• AND (^), with arbitrary fan-in. (An AND gate with fan-in zero always has
value 1.)

• OR (_), with arbitrary fan-in. (An OR gate with fan-in zero always has
value 0.)

One node C , which can be either an input or gate node, is designated the output
of the circuit.

Given an input stringF 2 {0, 1}= , each input node B8 is assigned the valueF8 ,
and each gate node labeled 5 computes its value by applying 5 to the values of its
in-neighbors. Thus we can think of the circuit as computing a Boolean function
⇠ : {0, 1}= ! {0, 1}, mapping each input string to the value of C . The depth of ⇠ ,
denoted depth(⇠), is the length of the longest directed path from any B8 to C . The
size of ⇠ , denoted |⇠ |, is the number of nodes in ⇠ .

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 41

De�nition 5.15. A circuit family is a sequence C = (⇠=)=2N such that for each=,
⇠= is a circuit with input length =. We treat C as a function on {0, 1}⇤ as follows:
for every F 2 {0, 1}⇤ with length =, C(F) = ⇠= (F). Then the language de�ned
by C is !(C) = {F 2 {0, 1}⇤ | C(F) = 1}. The depth and size of C are the
functions = 7! depth(⇠=) and = 7! |⇠= |.

Since the depth and size of a circuit family are functions, we are interested
in how they depend asymptotically on =. In particular, since transformers have
constant depth, circuit classes with constant depth are of particular interest.

De�nition 5.16. We de�ne the following classes of languages:

• AC0 contains those languages that can be recognized by families of circuits
with unbounded fan-in, $ (1) depth, and $ (poly(=)) size.

• TC0 is like AC0, but also allows MAJORITY gates, which have unbounded
fan-in and output 1 i� at least half of their inputs are 1.

• NC1 is like AC0, but with fan-in at most 2 and depth in $ (log=).
A circuit family contains a di�erent circuit for each length =, with no con-

straint on the relationship between the circuits. This has possibly surprising con-
sequences.

Example 5.17. Let ! be any unary language, that is, ! ✓ {1}⇤. For each = 2 N,
if 1= 2 !, let ⇠= be a circuit that always has value 1 (an AND gate with fan-in
zero), and if 1= 8 !, let ⇠= be a circuit that has value 0 (an OR gate with fan-in
zero). Thus, ! is recognized by a circuit family with $ (=) size and $ (1) depth,
and is therefore in AC0, even if it is undecidable.

To prevent such consequences, we impose aDLOGTIME-uniform restriction,
which says that, given =, the circuit ⇠= can be constructed in logarithmic time,
in the following sense.

De�nition 5.18 (Barrington et al., 1990). Let C = (⇠=)=2N be a circuit family,
and assume that the nodes of⇠= are numbered from 0 to |⇠= | � 1. We say that C
is DLOGTIME-uniform if there is a (deterministic) Turing machine that runs in
logarithmic time and accepts those tuples h5 , 8, 9, 1=i such that in ⇠= , node 8 has
label 5 and there is an edge from node 8 to node 9 .

5.3 More Logic

5.3.1 Arithmetic predicates
We can increase the expressivity of FO by adding more predicates besides <. The
logic FO[BIT] extends FOwith a predicate BIT(G,~), which tests whether the ~-
th bit (that is, the one with place value 2~) of G is set. That is, Eq. (5.8) is extended

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 42

with:
F , � |= BIT(G,~) if

⌅
� (G)/2� (~)

⇧
is odd. (5.18)

Theorem 5.19. The following formulas are de�nable in FO[BIT]:

(a) ADD(G,~, I) i� I = G + ~ (more precisely, F , � |= ADD(G,~, I) i� � (I) =
� (G) + � (~))

(b) MUL(G,~, I) i� I = G~

(c) DIV(G,~, I) i� I = bG/~c

(d) POW(G,~, I) i� I = G~

For readability, we usually write G + ~ = I in place of ADD(G,~, I), and
similarly for other arithmetic operations. Note that variables are interpreted in
{0, . . . ,= � 1}, so if = = 10 then 5 + 5 = I is false for all I.

Example 5.20. The following formula of FO[BIT] tests whether a number is
odd:

ODD(G) = ¬(9~.ADD(~,~, G)) = ¬(9~ .~ + ~ = G). (5.19)

Theorem 5.21 (Barrington et al., 1990). FO[BIT] de�nes exactly the languages
in DLOGTIME-uniform AC0.

5.3.2 Counting quanti�ers
FOC is �rst order logic with counting quanti�ers (Immerman, 1999, p. 185–187).

Example 5.22. The majority language,

MAJORITY = {F 2 {0, 1}⇤ | F has more 1’s than 0’s}. (5.20)

can be de�ned by the FOC formula

9G .9~ . (9=GI .&0 (I))| {z }
there are G many 0’s

^ (9=~I .&1 (I))| {z }
there are ~ many 1’s

^ ~ > G . (5.21)

The syntax of FOC is that of FO (Eq. (5.3)), as well as:

q ::= 9=G~.q1 (5.22)

We extend the de�nition of free variables (Eq. (5.4)) with:

FV(9=G~ .q1) = FV(q1) \ {~} [{G} (5.23)

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 43

And we extend the de�nition of |= (Eq. (5.8)) with:

F , � |= 9=G~ .q1 if |{ 9 | F , � [~ 7! 9] |= q1}| = � (G). (5.24)

Alternatively, counting quanti�ers can be de�ned in terms ofmajority quan-
ti�ers and vice versa. The formula MG .q (G) is true i� q (G) is true for a (strict)
majority of positions G . We write FOM for FO extended with majority quanti-
�ers.

Example 5.23. The language MAJORITY can of course be de�ned in FOM, by
the formula

MG .&1 (G). (5.25)

Theorem 5.24. FOC and FOM de�ne exactly the same languages.

From now on, we write FOC and FOM interchangeably.
Just as we extended FOwith the BIT predicate, we can extend FOMwith BIT

to get FOM[BIT].
Example 5.25. PARITY (Example 4.2) can be de�ned by the FOM[BIT] formula

9G . (9=G~ .&1 (~))| {z }
there are G many 1’s

^¬(9I.I + I = G)| {z }
G is odd

. (5.26)

Theorem 5.26 (Addition of $ (=) numbers with $ (log=) bits). If q (8, G) is a
formula of FOM[BIT] such that for each 8 2 {0, . . . ,= � 1}, q (8, G) is true for
exactly one G , then there is a formula SUMq (~) which is true i�

~ =
’

82{0,...,=�1}
G s.t. q (8,G) true

G .

Proof. For each 8 2 {0, . . . ,= � 1}, let G8 be such that q (8, G8) is true, and let G8 9 be
the 9-th bit of G8 . Then if we picture the sum as

G1,log= · · · G1,0
...

. . .
...

+ G=,log= · · · G=,0
~log= · · · ~0

then we can use a counting quanti�er to sum the 9-th column of bits (shifted left
by 9 bits):

COLSUMq (9, B0) = 9B .(9=B8 .9G .q (8, G) ^ BIT(G, 9)) ^ B0 = 29 ⇥ B . (5.27)

Now COLSUM(9, B0) de�nes log= numbers (one for each 9) with log= bits each.
We want their sum, which is de�nable in FO[BIT] (Immerman, 1999, proof of
Theorem 1.17.1). ⇤

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Chapter 5. Automata, Circuits, and Logic 44

Theorem 5.27 (Barrington et al., 1990). FOM[BIT] de�nes exactly the languages
in DLOGTIME-uniform TC0.

CSE 60963: Theory of Neural Networks Version of May 13, 2024

DR
AF
T

Bibliography

Arora, Sanjeev and Boaz Barak (2009). Computational Complexity: A Modern Ap-
proach. Cambridge University Press.

Barrington, David A.Mix, Neil Immerman, andHoward Straubing (1990). On uni-
formitywithinNC1. In: Journal of Computer and System Sciences 41.3, pp. 274–
306.

Gabbay, Dov, Amir Pnueli, Saharon Shelah, and Jonathan Stavi (1980). On the
temporal analysis of fairness. In: Proceedings of the 7th ACMSIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pp. 163–173.

Immerman, Neil (1999). Descriptive Complexity. Springer.
Kamp, Johan AnthonyWillem (1968). Tense Logic and the Theory of Linear Order .

PhD thesis. University of California, Los Angeles.
McNaughton, Robert and Seymour A. Papert (1971). Counter-Free Automata. MIT

Press.
Pin, Jean-Éric (2020). How to prove that a language is regular or star-free? In:

Language and Automata Theory and Applications (LATA). Lecture Notes in
Computer Science 12038, pp. 68–88.

Schützenberger, M. P. (1965). On �nite monoids having only trivial subgroups.
In: Information and Control 8.2, pp. 190–194.

Strobl, Lena,WilliamMerrill, GailWeiss, David Chiang, andDanaAngluin (2024).
What formal languages can transformers express? A survey. In: Transactions
of the Association for Computational Linguistics. To appear.

Thomas, Wolfgang (1997). Languages, automata, and logic. In: Handbook of For-
mal Languages: Volume 3, BeyondWords. Ed. by Grzegorz Rozenberg and Arto
Salomaa. Springer, pp. 389–455.

45

http://dx.doi.org/https://doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/https://doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1145/567446.567462
https://www.proquest.com/docview/302320357
https://archive.org/details/CounterFre_00_McNa
http://dx.doi.org/10.1007/978-3-030-40608-0_5
http://dx.doi.org/10.1016/S0019-9958(65)90108-7
http://dx.doi.org/10.1007/978-3-642-59126-6_7

