
Chapter 5

Transformers

5.1 Model

In this section, we define transformers and relevant variants, and how transform-
ers are used to describe formal languages. This section is adapted from Section 4
of the survey by Strobl et al. (2024).

Transformers are composed of an input layer (Section 5.1.1), one or more
hidden layers (Section 5.1.4), and an output layer. The inputs and outputs of the
layers are sequences of vectors, which we treat as members of (R𝑑)∗.

5.1.1 Input layer

Strings are initially mapped to sequences of vectors by emb : Σ∗ lp→ (R𝑑)∗, which
is the sum of a word embedding WE : Σ → R𝑑 and a position(al) embedding or
encoding PE𝑛 : [𝑛] → R𝑑 for 𝑛 ∈ N>0:

emb(𝑤0 · · ·𝑤𝑛−1) [𝑖] = WE(𝑤𝑖) + PE𝑛 (𝑖). (5.1)

In theoretical constructions, the word embedding can be any computable
function.

The original transformer paper (Vaswani et al., 2017) introduced the follow-
ing position embedding:

PE𝑛 (𝑖) [𝑗] =
{

sin(10000− 𝑗/𝑑 · 𝑖) if 𝑗 even
cos(10000−(𝑗−1)/𝑑 · 𝑖) if 𝑗 odd.

(5.2)

Theoretical papers have explored other position embeddings, including 𝑖 itself
(Pérez, Barceló, et al., 2021), 𝑖/𝑛 (Yao et al., 2021; Chiang and Cholak, 2022), and
1/𝑖 or 1/𝑖2 (Pérez, Barceló, et al., 2021).

45

Chapter 5. Transformers 46

5.1.2 Attention
Scaled dot-product self-attentionwith𝑑 input/output dimensions and𝑑hid key/value
dimensions is a function

att : (R𝑑)∗ lp→ (R𝑑)∗

X ↦→ Y (5.3)
Q[𝑖] = WQ (X[𝑖]) (5.4)
K[𝑗] = WK (X[𝑗]) (5.5)
V[𝑗] = WV (X[𝑗]) (5.6)

s[𝑖, 𝑗] = Q[𝑖] · K[𝑗]
√
𝑑hid

(5.7)

𝛼 [𝑖, :] = softmax(s[𝑖, :]) (5.8)

=
exp s[𝑖, :]∑︁

𝑗∈[𝑑]
exp s[𝑖, 𝑗]

(5.9)

Y[𝑖] =
∑︁
𝑗∈[𝑛]

𝛼 [𝑖, 𝑗] V[𝑗] (5.10)

with parameters

WQ,WK ∈ R𝑑hid×𝑑

WV ∈ R𝑑×𝑑

We call the Q[𝑖] the queries, the K[𝑗] the keys, the V[𝑗] the values, the s[𝑖, 𝑗] the
attention scores, and we call the 𝛼 [𝑖, 𝑗] the attention weights.

Real transformers use multi-head self-attention, but we don’t use it because
it can be emulated using single-head self-attention.

Attention masking In future-masked (also known as causally-masked) self at-
tention, a term𝑚(𝑖, 𝑗) is added to Eq. (5.7) to force every position to attend only
to preceding positions:

𝑚(𝑖, 𝑗) =
{

0 if 𝑗 ≤ 𝑖

−∞ otherwise.
(5.11)

(We define exp(−∞) = 0.) Some papers use strict future-masking, that is,𝑚(𝑖, 𝑗) =
0 iff 𝑗 < 𝑖 , and occasionally past-masking (𝑗 ≥ 𝑖) and strict past-masking (𝑗 > 𝑖).

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 47

Hard attention Some theoretical analyses simplify attention by replacing the
softmax with variants that focus attention only on the position(s) with the max-
imum value, breaking ties in various ways.

For any vector x ∈ R𝑑 , define 𝑀 (x) = {𝑖 ∈ [𝑛] | ∀𝑗 ∈ [𝑛], x[𝑗] ≤ x[𝑖]} to
be the set of indices of the maximal elements of x. In leftmost-hard attention, the
leftmost maximal element is used, replacing Eq. (5.8) with:

𝛼 [𝑖, 𝑗] = I[𝑗 = min𝑀 (s[𝑖, :])] . (5.12)

whereas in average-hard attention, the maximal elements share weight equally:

𝛼 [𝑖, 𝑗] = I[𝑗 ∈ 𝑀 (s[𝑖, :])]
|𝑀 (s[𝑖, :]) | . (5.13)

Leftmost-hard attention was previously called hard attention by Hahn (2020)
and unique-hard attention by Hao et al. (2022). One may also consider rightmost-
hard attention, in which the rightmost maximal element is used. Average-hard
attention was also called hard attention by Pérez, Barceló, et al. (2021) and satu-
rated attention by Merrill, Sabharwal, et al. (2022), and has been argued to be a
realistic approximation to how trained transformers behave in practice (Merrill,
Ramanujan, et al., 2021). Neither type of hard attention should be confused with
the concept of hard attention used in computer vision (e.g., Xu et al., 2015).

5.1.3 Layer normalization
A 𝑑-dimensional layer normalization (Ba et al., 2016), or layernorm for short, is a
function

norm : R𝑑 → R𝑑

x ↦→ 𝛾 ⊙ x − x̄√︁
Var(x) + 𝜀

+ 𝛽 (5.14)

where ⊙ is component-wise multiplication,

x̄ =
1
𝑑

∑︁
𝑖∈[𝑑]

x𝑖 (5.15)

Var(x) = 1
𝑑

∑︁
𝑖∈[𝑑]

(x𝑖 − x̄)2 (5.16)

and the parameters are

𝛾, 𝛽 ∈ R𝑑

𝜀 ≥ 0.

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 48

The original definition of layernorm (Ba et al., 2016) sets 𝜀 = 0, but, for nu-
merical stability, and to avoid division by zero, all implementations we are aware
of set 𝜀 > 0. Observe that norm is Lipschitz-continuous iff 𝜀 > 0.

Some transformer analyses omit layernorm for simplicity (e.g. Pérez, Barceló,
et al., 2021).

5.1.4 Hidden layers
A transformer layer (also known as a block) comes in two variants. The post-norm
variant (Vaswani et al., 2017) is

layer : (R𝑑)∗ lp→ (R𝑑)∗

X ↦→ Y where
H = norm1 (X + att (X))
Y = norm2 (H + ffn(H))

(5.17)

and the pre-norm variant (Wang et al., 2019) has

H = X + att (norm1 (X))
Y = H + ffn(norm2 (H))

(5.18)

where

• att is a self-attention with 𝑑 input/output dimensions and 𝑑hid key/value
dimensions

• ffn is a feed-forward network with 𝑑 input/output dimensions and two
layers, one ReLU and one linear. In applications, the hidden layer usually
has 4𝑑 dimensions, but theoretical constructions use as many or as few
dimensions as needed.

• norm1 and norm2 are layernorms with 𝑑 dimensions.

In both variants, the X+ and H+ terms are called residual connections (He et al.,
2015), also known as skip connections.

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 49

5.1.5 Transformer encoders
A post-norm transformer encoder is a length-preserving function

tfr : Σ∗ lp→ (R𝑑)∗

w ↦→ A(𝐿) where
A(0) = emb(𝑤)
A(1) = layer1 (A(0))

...

A(𝐿) = layer𝐿 (A(𝐿−1))

(5.19)

where

• emb is an input layer

• 𝐿 is called the depth

• each layerℓ for ℓ ∈ [𝐿] is a post-norm transformer layer (5.17).

A pre-norm transformer encoder is additionally parameterized by the weights
of a final layernorm norm and is defined as:

tfr : Σ∗ lp→ (R𝑑)∗

w ↦→ norm(A(𝐿)) where
A(0) = emb(w)
A(1) = layer1 (A(0))

...

A(𝐿) = layer𝐿 (A(𝐿−1))

(5.20)

where

• emb is an input layer

• 𝐿 is called the depth

• each layerℓ for ℓ ∈ 1, . . . , 𝐿 is a pre-norm transformer layer (5.18)

• norm is a layernorm.

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 50

The encoder’s output is a sequence of vectors in (R𝑑)∗. To use it as a language
recognizer, we add a linear output layer

out : R𝑑 → R

h ↦→ Wh + 𝑏 𝑖 ∈ [𝑛] (5.21)

with parametersW ∈ R1×𝑑 and 𝑏 ∈ R. The encoder accepts iff out (tfr (𝑤) [𝑛]) ≥
0.

Exercise 5.1. One very common operation in a transformer is for each position
to look at the position to its immediate left. (Let’s say the leftmost position looks
at itself.) Assume we have a sequence of vectors

X =

𝑥0
1
0
0
0

,

𝑥1
1
1
1
0

,

𝑥2
1
2
4
0

, . . . ,

𝑥𝑖
1
𝑖

𝑖2

0

, . . . ,

𝑥𝑛−1

1
𝑛 − 1

(𝑛 − 1)2

0

,

for some sequence 𝑥0, . . . , 𝑥𝑛−1 ∈ R. Write down an average-hard attention trans-
former layer 𝑓 that computes

𝑓 (X) =

𝑥0
1
0
0
𝑥0

,

𝑥1
1
1
1
𝑥0

,

𝑥2
1
2
4
𝑥1

, . . . ,

𝑥𝑖
1
𝑖

𝑖2

𝑥𝑖−1

, . . . ,

𝑥𝑛−1

1
𝑛 − 1

(𝑛 − 1)2

𝑥𝑛−2

.

Hint: The function 2 𝑗 − 𝑗2 is maximized when 𝑗 = 1. Can you tweak this function
to be maximized at 𝑗 = 𝑖 − 1, and can you construct the 𝑓 so that s[𝑖, 𝑗] equals
this function?

5.2 Expressivity

The two seminal papers in the area of expressivity of transformers are often
summarized as follows:

Transformers are Turing-complete (Pérez, Marinković, et al., 2019;
Pérez, Barceló, et al., 2021).

Transformers, given a string of 0’s and 1’s, cannot tell whether the
number of 1’s is odd or even (Hahn, 2020).

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 51

· · ·

· · ·

· · ·

· · ·· · ·· · ·· · ·

· · ·· · ·· · ·· · ·

· · ·· · ·· · ·· · ·

(a) RNN (b) transformer

Figure 5.1: Thought of as computation graphs, an RNN (a) has a path of
length 𝑂 (𝑛), but a transformer (b) only has paths of length 𝑂 (1).

How can both of these statements be true? They rely on different assumptions
about what a transformer is and what it means for a transformer to recognize
a formal language. One of our goals in the next three chapters is to disentangle
these assumptions and help you to understand how all the results in this area of
research fit together.

5.2.1 Parallelism
In Theory of Computing, you learned about the Chomsky hierarchy of regu-
lar languages, context-free languages, context-sensitive languages, and Turing-
recognizable (or recursively enumerable) languages, and in the previous chapter,
we saw how RNNs could be related to two levels of that hierarchy (regular and
Turing-recognizable).

With transformers, we will see that under the right assumptions, they, too,
can be related to Turing machines. However, none of the other levels of the
Chomsky hierarchy seem to be a good fit for transformers. In particular, there
are non-regular languages that transformers can express and some regular lan-
guages that transformers apparently can’t express.

In a word, the reason is parallelism. If you think of a neural network as a
computation graph, then an RNN has a path of length 𝑛 (Fig. 5.1a). So does a
finite automaton. But a transformer only has paths of bounded length (Fig. 5.1b).

One reason for the difference is trainability: long paths can lead to vanish-
ing or exploding gradients. Another reason, and the reason given in the original
transformer paper (Vaswani et al., 2017), is that networks with short paths are
more parallelizable on GPUs.

5.2.2 Circuit complexity
In complexity theory, one way of modeling parallelizability is circuit complexity.
This section, which is an expanded version of Section 5.2 of the survey by Strobl

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 52

et al. (2024), gives a brief introduction to circuit complexity. For a more detailed
treatment, please see the textbook by Arora and Barak (2009).

In this section, we deal a lot with bits. We write log𝑛 for ⌈log2 𝑛⌉, which is
the number of bits needed to represent a number in [𝑛].

Circuits operate on binary values, so for the rest of this section, we assume
Σ = {0, 1}. (If we want to use circuits to model sets of strings over an alphabet Σ,
we can choose a fixed-length encoding of the symbols of Σ as strings of𝑏 = log |Σ|
bits and encode the value of the 𝑖-th input symbol into positions 𝑖𝑏 to 𝑖𝑏+ (𝑏−1).)

Example 5.2. Here’s a circuit with input length 2. It computes the XOR function.
We draw the inputs at the bottom and the output at the top.

𝑠1 𝑠2

∨ ∧

¬

∧
𝑡

Definition 5.3 (Boolean circuits). A (Boolean) circuit 𝐶 with input length 𝑛 is a
directed acyclic graph with

1. 𝑛 nodes 𝑠0, . . . , 𝑠𝑛−1 with zero fan-in, designated as input nodes:

𝑠𝑖

· · ·

2. zero or more fan-in (in-degree) gate nodes, each labeled with a function:

¬
· · ·

∧

· · ·

· · ·
∨

· · ·

· · ·

• NOT (¬), with fan-in one.
• AND (∧), with arbitrary fan-in. (AnANDgatewith fan-in zero always
has value 1.)

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 53

• OR (∨), with arbitrary fan-in. (An OR gate with fan-in zero always
has value 0.)

3. A node 𝑡 , which can be either an input or gate node, is designated the
output of the circuit.

𝑡

· · ·

Given an input string w ∈ {0, 1}𝑛 , each input node 𝑠𝑖 is assigned the value
𝑤𝑖 , and each gate node labeled 𝑓 computes its value by applying 𝑓 to the values
of its in-neighbors. Thus, we can think of the circuit as computing a function
𝐶 : {0, 1}∗ → {0, 1}, mapping each input string w to the value of 𝑡 .

The depth of 𝐶 , denoted depth(𝐶), is the length of the longest directed path
from any 𝑠𝑖 to 𝑡 . The size of 𝐶 , denoted |𝐶 |, is the number of nodes in 𝐶 .

Example 5.4. The longest path in 𝐶 in Example 5.2 is 3, so depth(𝐶) = 3. The
number of nodes in 𝐶 is 6, so |𝐶 | = 6.

𝑠0 𝑠1

∨ ∧

¬

∧
𝑡

depth(𝐶) = 3

𝑠0 𝑠1

∨ ∧

¬

∧
𝑡

|𝐶 | = 6

Definition 5.5 (Boolean circuit families). A circuit family is a sequence C =

(𝐶𝑛)𝑛∈N such that for each 𝑛, 𝐶𝑛 is a circuit with input length 𝑛. We treat C as a
function on {0, 1}∗ as follows.

For every w ∈ {0, 1}∗ with length 𝑛, C(w) = 𝐶𝑛 (w). Then the language
defined by C is 𝐿(C) = {w ∈ {0, 1}∗ | C(w) = 1}. The depth and size of C are
the functions 𝑛 ↦→ depth(𝐶𝑛) and 𝑛 ↦→ |𝐶𝑛 |.

Since the depth and size of a circuit family are functions, we are interested
in how they depend asymptotically on 𝑛. In particular, since transformers have
constant depth, circuit classes with constant depth are of particular interest.

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 54

Definition 5.6 (AC𝑘 , TC𝑘 , and NC𝑘). We define the following classes of lan-
guages:

• AC𝑘 is the class of languages that can be recognized by families of circuits
with unbounded fan-in, 𝑂 (poly(𝑛)) size, and 𝑂 ((log𝑛)𝑘) depth.

• TC𝑘 is like AC𝑘 , but also allows MAJORITY gates, which have unbounded
fan-in and output 1 iff at least half of their inputs are 1.

• NC𝑘 is the class of languages that can be recognized by families of circuits
with fan-in at most 2, 𝑂 (poly(𝑛)) size, and 𝑂 ((log𝑛)𝑘) depth.

A circuit family contains a different circuit for each length 𝑛, with no con-
straint on the relationship between the circuits. This has some surprising conse-
quences.

Example 5.7. Let 𝐿 be any unary language, that is, 𝐿 ⊆ {1}∗. For each 𝑛 ∈ N, if
1𝑛 ∈ 𝐿, let𝐶𝑛 be a circuit that always has value 1 (an AND gate with fan-in zero),
and if 1𝑛 ∉ 𝐿, let 𝐶𝑛 be a circuit that has value 0 (an OR gate with fan-in zero).
Then, 𝐿 is recognized by a circuit family with 𝑂 (𝑛) size and 𝑂 (1) depth, and is
therefore in AC0, even if it is undecidable.

To prevent such consequences, we impose a uniformity restriction, which
says that, given 𝑛, the circuit𝐶𝑛 must be constructible under some limitation on
computational resources, in the following sense.

Definition 5.8 (DLOGTIME uniformity, Barrington et al., 1990). LetC = (𝐶𝑛)𝑛∈N
be a circuit family, and assume that the nodes of 𝐶𝑛 are numbered from 0 to
|𝐶𝑛 | −1. We say that C is DLOGTIME-uniform if there is a (deterministic) Turing
machine that runs in logarithmic time and accepts those tuples ⟨𝑓 , 𝑖, 𝑗, 1𝑛⟩ such
that in 𝐶𝑛 , node 𝑖 has label 𝑓 and there is an edge from node 𝑖 to node 𝑗 .

For the rest of this section, whenever we mention a circuit complexity class,
we mean the DLOGTIME-uniform version of it.

Figure 5.2 shows the language classes in the Chomsky hierarchy and the cir-
cuit classes we’ll use in this course. AC0 is the smallest circuit complexity class
we’ll be interested in. As a reminder, the 0 means that the circuit families in this
class have bounded (𝑂 (1)) depth.

The classic examples of languages not in this class are (Furst et al., 1984):

PARITY = {w ∈ {0, 1}∗ | w has an odd number of 1’s}
MAJORITY = {w ∈ {0, 1}∗ | w has more 1’s than 0’s}.

TC0 contains both of the above languages, and many more. What are some
languages not in TC0? This question is especially interesting, because, as we will

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 55

see (Section 8.1), we think such languages would be too difficult for transformers.
There is an open question of whether TC0 = NC1 (analogous to the more famous
question of whether P = NP), and it’s widely believed that TC0 ≠ NC1. If they
are in fact different, then any NC1-complete language is not in TC0.

• One example of an NC1-complete language is the Boolean Formula Value
Problem (BFVP). The instances are propositional formulas built up from
constants 0 and 1 and the connectives ∧, ∨, ¬, and the problem is to decide
whether such a formula is true or not. In other words, it is defined by the
following context-free grammar:

𝑆 → 𝐹1

𝐹1 → (𝐹1 ∧ 𝐹1)
| (𝐹0 ∨ 𝐹1) | (𝐹1 ∨ 𝐹0) | (𝐹1 ∨ 𝐹1)
| (¬𝐹0)
| 1

𝐹0 → (𝐹0 ∧ 𝐹0) | (𝐹0 ∧ 𝐹1) | (𝐹1 ∧ 𝐹0)
| (𝐹1 ∨ 𝐹1)
| (¬𝐹1)
| 0

Linguistically, the ability to evaluate Boolean formulas is directly relevant
to computations underlying compositional semantics.

• The canonical example of a regular butNC1-complete language is the word
problem for 𝑆5. A permutation of [𝑘] is a bijection 𝜋 : [𝑘] → [𝑘], and 𝑆𝑘
is the set of all permutations of [𝑘]. Treating 𝑆𝑘 as an alphabet and com-
positions of permutations as strings, we can define the languageW(𝑆𝑘) of
compositions of permutations of [𝑘] that equal the identity permutation.
For example, in 𝑆5, the permutation (01) swaps 0 and 1, while the permuta-
tion (01234) cycles 0 to 1, 1 to 2, and so on, and 4 to 0. So (01) (01) ∈ W(𝑆5)
but (01234) (01234) ∉ W(𝑆5). These languages are easy for finite automata
to recognize, but difficult with only fixed computation depth.

5.2.3 Overview of results
Where do transformers sit in Fig. 5.2?

• If attention is simplified to unique-hard attention, in which attention is
entirely focused on one position, then transformers are in AC0 (Chapter 7)
and therefore cannot recognize PARITY.

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 56

context-sensitive

context-free

regular

NC1

TC0

AC0

(aa)∗
PARITY

W(𝑆5)

𝑤𝑤R

MAJORITY

BFVP

𝑤𝑤

Figure 5.2: Some complexity classes defined by circuit families and logics, com-
pared with the perhaps more familiar Chomsky hierarchy. Assumes TC0 ≠ NC1

and L ≠ NL. Circuit classes are DLOGTIME-uniform.

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Chapter 5. Transformers 57

• Otherwise, transformers appear to be in TC0 (Section 8.1).

• But if we allow transformers to take intermediate steps, they are Turing-
complete (Chapter 9).

CSE 60963: Theory of Neural Networks Version of October 3, 2024

Bibliography

Arora, Sanjeev and Boaz Barak (2009). Computational Complexity: A Modern Ap-
proach. Cambridge University Press.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton (2016). Layer normal-
ization. In: NIPS 2016 Deep Learning Symposium.

Barrington, David A.Mix, Neil Immerman, andHoward Straubing (1990). On uni-
formitywithinNC1. In: Journal of Computer and System Sciences 41.3, pp. 274–
306.

Chiang, David and Peter Cholak (May 2022). Overcoming a theoretical limitation
of self-attention. In: Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 7654–7664.

Furst, Merrick, James B. Saxe, and Michael Sipser (1984). Parity, circuits, and the
polynomial-time hierarchy. In: Mathematical Systems Theory 17, pp. 13–27.

Hahn,Michael (2020). Theoretical limitations of self-attention in neural sequence
models. In: Transactions of the Association for Computational Linguistics 8,
pp. 156–171.

Hao, Yiding, Dana Angluin, and Robert Frank (2022). Formal language recogni-
tion by hard attention Transformers: perspectives from circuit complexity.
In: Transactions of the Association for Computational Linguistics 10, pp. 800–
810.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). Deep residual
learning for image recognition. arXiv:1512.03385.

Merrill, William, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz, and Noah A.
Smith (2021). Effects of parameter norm growth during transformer train-
ing: inductive bias from gradient descent. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1766–1781.

Merrill, William, Ashish Sabharwal, and Noah A. Smith (2022). Saturated trans-
formers are constant-depth threshold circuits. In: Transactions of the Associ-
ation for Computational Linguistics 10, pp. 843–856.

Pérez, Jorge, Pablo Barceló, and Javier Marinkovic (2021). Attention is Turing-
complete. In: Journal of Machine Learning Research 22, 75:1–75:35.

58

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
http://dx.doi.org/https://doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/https://doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/10.18653/v1/2022.acl-long.527
http://dx.doi.org/10.18653/v1/2022.acl-long.527
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1162/tacl_a_00306
http://dx.doi.org/10.1162/tacl_a_00306
http://dx.doi.org/10.1162/tacl_a_00490
http://dx.doi.org/10.1162/tacl_a_00490
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.18653/v1/2021.emnlp-main.133
http://dx.doi.org/10.18653/v1/2021.emnlp-main.133
http://dx.doi.org/10.1162/tacl_a_00493
http://dx.doi.org/10.1162/tacl_a_00493
http://jmlr.org/papers/v22/20-302.html
http://jmlr.org/papers/v22/20-302.html

Bibliography 59

Pérez, Jorge, Javier Marinković, and Pablo Barceló (2019). On the Turing com-
pleteness of modern neural network architectures. In: Proceedings of the Sev-
enth International Conference on Learning Representations (ICLR).

Strobl, Lena,WilliamMerrill, GailWeiss, David Chiang, andDanaAngluin (2024).
What formal languages can transformers express? A survey. In: Transactions
of the Association for Computational Linguistics. To appear.

Vaswani, Ashish, NoamShazeer, Niki Parmar, JakobUszkoreit, Llion Jones, Aidan
N. Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). Attention is all you
need. In: Advances in Neural Information Processing Systems 30 (NeurIPS).

Wang, Qiang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and
Lidia S. Chao (2019). Learning deep Transformer models for machine trans-
lation. In: Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio (2015). Show, attend and tell:
neural image caption generation with visual attention. In: Proceedings of the
32nd International Conference on Machine Learning, pp. 2048–2057.

Yao, Shunyu, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan
(Aug. 2021). Self-attention networks can process bounded hierarchical lan-
guages. In: Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP), pp. 3770–3785.

CSE 60963: Theory of Neural Networks Version of October 3, 2024

https://openreview.net/forum?id=HyGBdo0qFm
https://openreview.net/forum?id=HyGBdo0qFm
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://dx.doi.org/10.18653/v1/P19-1176
http://dx.doi.org/10.18653/v1/P19-1176
https://proceedings.mlr.press/v37/xuc15.html
https://proceedings.mlr.press/v37/xuc15.html
http://dx.doi.org/10.18653/v1/2021.acl-long.292
http://dx.doi.org/10.18653/v1/2021.acl-long.292

	Transformers
	Model
	Input layer
	Attention
	Layer normalization
	Hidden layers
	Transformer encoders

	Expressivity
	Parallelism
	Circuit complexity
	Overview of results

