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Chapter 6

Transformers

6.1 Model
In this section, we de�ne transformers and relevant variants, and how transform-
ers are used to describe formal languages. This section is adapted from Section 4
of the survey by Strobl, Merrill, et al. (2024).

Transformers are composed of an input layer (Section 6.1.1), one or more
hidden layers (Section 6.1.4), and an output layer. The inputs and outputs of the
layers are sequences of vectors, which we treat as members of (R3 )⇤.

6.1.1 Input layer

Strings are initially mapped to sequences of vectors by emb : ⌃⇤ lp! (R3 )⇤, which
is the sum of a word embedding WE : ⌃ ! R3 and a position(al) embedding or
encoding PE= : [=] ! R3 for = 2 N>0:

emb(F0 · · ·F=�1) [8] = WE(F8 ) + PE= (8). (6.1)

In theoretical constructions, the word embedding can be any computable
function.

The original transformer paper (Vaswani et al., 2017) introduced the follow-
ing position embedding:

PE= (8) [ 9] =
(
10000� 9/3 sin 8 if 9 even
10000� ( 9�1)/3 cos 8 if 9 odd.

(6.2)

Theoretical papers have explored other position embeddings, including 8 itself
(Pérez et al., 2021), 8/= (Yao et al., 2021; Chiang and Cholak, 2022), and 1/8 or 1/82
(Pérez et al., 2021).
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6.1.2 Attention
Scaled dot-product self-attentionwith3 input/output dimensions and3hid key/value
dimensions is a function

a� : (R3 )⇤ lp! (R3 )⇤

X 7! Y (6.3)

s[8, 9] = WQ (X[8]) ·WK (X[ 9])p
3hid

(6.4)

U [8, :] = so�max(s[8, :]) (6.5)

=
exp s[8, :]’

92 [3 ]
exp s[8, 9]

(6.6)

Y[8] =
’
92 [=]

U [8, 9]WV (X[ 9]) (6.7)

with parameters

WQ,WK 2 R3hid⇥3

WV 2 R3⇥3

We call the s[8, 9] the attention scores, and we call the U [8, 9] the attention weights.
Real transformers use multi-head self-attention, but we don’t use it because

it can be emulated using single-head self-attention.

Attention masking In future-masked (also known as causally-masked) self at-
tention, a term<(8, 9) is added to Eq. (6.4) to force every position to attend only
to preceding positions:

<(8, 9) =
(
0 if 9  8

�1 otherwise.
(6.8)

(We de�ne exp(�1) = 0.) Some papers use strict future-masking, that is,<(8, 9) =
0 i� 9 < 8 , and occasionally past-masking ( 9 � 8) and strict past-masking ( 9 > 8).

Hard attention Some theoretical analyses simplify attention by replacing the
softmax with variants that focus attention only on the position(s) with the max-
imum value, breaking ties in various ways.

For any vector x 2 R3 , de�ne " (x) = {8 2 [=] | 89 2 [=], x[ 9]  x[8]} to
be the set of indices of the maximal elements of x. In leftmost-hard attention, the
leftmost maximal element is used, replacing Eq. (6.5) with:

U [8, 9] = I[ 9 = min" (s[8, :])] (6.9)
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whereas in average-hard attention, the maximal elements share weight equally:

U [8, 9] = I[ 9 2 " (s[8, :])]
|" (s[8, :]) | . (6.10)

Leftmost-hard attention was previously called hard attention by Hahn (2020)
and unique-hard attention by Hao et al. (2022). One may also consider rightmost-
hard attention, in which the rightmost maximal element is used. Average-hard
attention was also called hard attention by Pérez et al. (2021) and saturated at-
tention by Merrill, Sabharwal, and Smith (2022), and has been argued to be a
realistic approximation to how trained transformers behave in practice (Merrill,
Ramanujan, et al., 2021). Neither type of hard attention should be confused with
the concept of hard attention used in computer vision (e.g., Xu et al., 2015).

6.1.3 Layer normalization
A 3-dimensional layer normalization (Ba et al., 2016), or layernorm for short, is a
function

norm : R3 ! R3

x 7! W � x � x̄p
Var(x) + Y

+ V (6.11)

where � is component-wise multiplication,

x̄ =
1
3

’
82 [3 ]

x8 (6.12)

Var(x) = 1
3

’
82 [3 ]

(x8 � x̄)2 (6.13)

and the parameters are

W, V 2 R3

Y � 0.

The original de�nition of layernorm (Ba et al., 2016) sets Y = 0, but, for nu-
merical stability, and to avoid division by zero, all implementations we are aware
of set Y > 0. Observe that norm is Lipschitz-continuous i� Y > 0.

Some transformer analyses omit layernorm for simplicity (e.g. Pérez et al.,
2021).
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6.1.4 Hidden layers
A transformer layer (also known as a block) comes in two variants. The post-norm
variant (Vaswani et al., 2017) is

layer : (R3 )⇤ lp! (R3 )⇤

X 7! Y where
H = norm1 (X + a� (X))
Y = norm2 (H + �n(H))

(6.14)

and the pre-norm variant (Wang et al., 2019) has

H = X + a� (norm1 (X))
Y = H + �n(norm2 (H))

(6.15)

where

• a� is a self-attention with 3 input/output dimensions and 3hid key/value
dimensions

• �n is a feed-forward network with 3 input/output dimensions and two
layers, one ReLU and one linear. In applications, the hidden layer usually
has 43 dimensions, but theoretical constructions use as many or as few
dimensions as needed.

• norm1 and norm2 are layernorms with 3 dimensions.

In both variants, the X+ and H+ terms are called residual connections (He et al.,
2015), also known as skip connections.

6.1.5 Transformer encoders
A post-norm transformer encoder is a length-preserving function

tfr : ⌃⇤ lp! (R3 )⇤

F 7! H(!) where

H(0) = emb(F)
H(1) = layer1 (H(0) )

...

H(!) = layer! (H(!�1) )

(6.16)

where
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• 4 is an input layer

• ! is called the depth

• each layer✓ for ✓ 2 [!] is a post-norm transformer layer (6.14).

A pre-norm transformer encoder is additionally parameterized by the weights
of a �nal layernorm norm and is de�ned as:

tfr : ⌃⇤ lp! (R3 )⇤

F 7! norm(H(!) ) where
H(0) = emb(F)
H(1) = layer1 (H(0) )

...

H(!) = layer! (H(!�1) )

(6.17)

where

• 4 is an input layer

• ! is called the depth

• each layer✓ for ✓ 2 [!] is a pre-norm transformer layer (6.15)

• norm is a layernorm.

The encoder’s output is a sequence of vectors in (R3 )⇤. To use it as a language
recognizer, we add a linear output layer

out : R3 ! R
h 7! w · h + 1 8 2 [=] (6.18)

where parameters w 2 R3 , and 1 2 R. The encoder accepts i� out (tfr (F) [=]) �
0.

6.2 Expressivity

6.2.1 Decoders with intermediate steps
Transformer decoders A transformer decoder is a transformer encoder tfr with
future masking in its attention, typically used to generate rather than recognize
strings. GPT and its competitor LLMs are all transformer decoders.

CSE 60963: Theory of Neural Networks Version of June 4, 2024
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decoder
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· · ·

· · ·
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(a) without prompt (b) with prompt

Figure 6.1: Generating strings from a transformer decoder.

We assume that ⌃ contains a special symbol BOS that does not occur any-
where else; later, we will add several other special symbols. The input string is
the pre�x of previously-generated symbols,F<C = F0 · · ·FC�1, whereF0 = BOS.
The output is a probability distribution ?̂ (FC | F<C ) over the next symbol,

out : R3 ! R
x 7! Wx + b (6.19)

?̂ (· | F<C ) = so�max(out (tfr (F<C ) [C � 1])) (6.20)

where parameters W 2 R |⌃ |⇥3 and b 2 R |⌃ | .
To sample a string, we �rst sampleF1 from ?̂ (F1 | BOS), then, for each time

step C > 1, sample FC from ?̂ (FC | F<C ). The process stops when FC = EOS.
Because each sampled output symbol becomes part of the input at the next time
step, this kind of model is called autoregressive. See Fig. 6.1a.

In most (not all) theoretical papers about transformer decoders, we want the
decoder to output a single next symbol instead of a probability distribution over
next symbols. To do this, we can select the argmax of out (tfr (F<C ) [C�1]) instead.
Warning: In general, selecting the argmax at each step does not give you the
highest-probability string.

We can also provide a prompt G to the decoder, which the decoder can see
as part of its input but doesn’t have to output. In that case, for C � 1, the input
string is G · BOS · ~<C , and the output is ~C . See Fig. 6.1b.

Intermediate steps In many applications of transformer decoders, the prompt
G is some kind of question, and the desired output ~ is the answer. For example,
G = 101*101 and ~ = 10201. Researchers have found in practice that sometimes
a transformer decoder isn’t very good at answering certain kinds of questions,
but if one allows the decoder to insert a number of intermediate time steps be-
tween the prompt and the �nal output, it sometimes performs much better. This
is known as a scratchpad (Nye et al., 2022) or chain of thought (Wei et al., 2022).
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Here, we’re only interested in the case where the �nal output is a single symbol,
so we have the following de�nition.

De�nition 6.1. Let 5 be a transformer decoder. For any string G 2 ⌃⇤, we say
that 5 , on prompt G , outputs ~) after ) intermediate steps if there is a string
~ = ~1 · · ·~) such that for all C = 1, . . . ,) , we have 5 (G · BOS · ~1 · · ·~C�1) = ~C .

Turing machines We assume that you are familiar with Turing machines. We
use the de�nition of Turing machine in the textbook by Sipser (2013), with one
small modi�cation. Just to make sure we’re on the same page, we give the barest
of de�nitions here.

De�nition 6.2. A Turing machine is a tuple" = (&, ⌃, �, X,@start,@accept,@reject),
where

• & is a �nite set of states

• ⌃ is a �nite input alphabet, where � 8 ⌃

• � is a �nite tape alphabet, where ⌃ [ {� } ✓ �

• X : & ⇥ � ! & ⇥ � ⇥ {�1, +1} is the transition function.

The tape has a left end and extends in�nitely to the right. On input F 2 ⌃⇤, the
tape is initialized toF�� · · · . If the current state is @, the current tape symbol is
0, and X (@,0) = (A ,1,<), then the machine enters state A , writes a 1, and moves
left if < = �1, right if < = +1. If the machine enters state @accept, it halts and
acceptsF ; if it enters state @reject, it halts and rejectsF .

Example 6.3. Here’s an example Turing machine (Sipser, 2013), with @start = @1,
@accept = @6, @reject = @7. It decides the language {12

= | = � 0}.

@1 @2 @3 @4

@5

@6@7 @7

1 ! � , +1

x ! x, +1
� ! � , +1

x ! x, +1

1 ! x, +1

� ! � , +1

x ! x, +1
1 ! 1, +1

� !
� ,
�1

x ! x, +1

1 ! x, +1

� ! � , +1

1 ! 1,�1
x ! x,�1

� !
� , +1
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The reject state @7 appears twice to reduce clutter.
The (not very exciting) run of this machine on string 11 is:

@1 1
ˆ
1� · · ·

@2 �1
ˆ
� · · ·

@3 �x�
ˆ
· · ·

@5 �x
ˆ
� · · ·

@5 �
ˆ
x� · · ·

@2 �x
ˆ
� · · ·

@6 accept

Simulating Turing machines

Theorem 6.4. For any Turing machine" with input alphabet ⌃, there is a trans-
former decoder 5 with average-hard attention that is equivalent to" in the follow-
ing sense. For any stringF 2 ⌃⇤:

• If " halts and accepts on input F , then there is a ) such that 5 , on prompt
F , outputs ACC after ) intermediate steps.

• If" halts and rejects on inputF , then there is a) such that 5 , on promptF ,
outputs REJ after ) intermediate steps.

• If " does not halt on input F , then there does not exist a ) such that 5 , on
promptF , outputs either ACC or REJ.

The rest of this section proves the above theorem. There are several related
proofs in the literature (Pérez et al., 2021; Bhattamishra et al., 2020; Merrill and
Sabharwal, 2024); ours is an amalgam of these.

Let" = (&, ⌃, �, X,@start,@accept,@reject). The alphabet of 5 .tfr is ⌃[{BOS,ACC, REJ}[
(& ⇥ � ⇥ {�1, +1}). At each time step starting with BOS, the network outputs a
triple (A ,1,<) 2 (& ⇥ � ⇥ {�1, +1}) indicating what the next simulated action
of" is.

Each time step 8 = 1, 2, . . . of the transformer proceeds as follows.

1. Unpack the current input symbol, G (8 ) :

• If G (8 ) 2 ⌃ [ BOS, let @ (8 ) = ? and< (8�1) = 0.
• Else, let (@ (8 ) ,1 (8�1) ,< (8�1) ) = G (8 ) .

2. Compute the head position: ⌘ (8 ) =
Õ8�1

9=0<
( 9 ) .

3. Compute the symbol under the head, 0 (8 ) :
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• Find 9⇤, the rightmost position 9 < 8 such that ⌘ ( 9 ) = ⌘ (8 ) .
• If 9⇤ exists and 1 ( 9 ) < ?, let 0 (8 ) = 1 ( 9⇤ ) .

• Else, if G (⌘ (8 ) ) 2 ⌃, let 0 (8 ) = G (⌘ (8 ) ) .
• Else, let 0 (8 ) = � .

4. Compute the next transition:

• If G (8 ) 2 ⌃, just output ~ (8 ) = G (8 ) . (It will be ignored anyway.)
• Else, if G (8 ) = BOS, let @ (8+1) = @start, 1 (8 ) = 0 (8 ) , and< (8 ) = 0.
• Else, let (@ (8+1) ,1 (8 ) ,< (8 ) ) = X (@ (8 ) ,0 (8 ) ).
• If @ (8+1) = @accept or @reject, output ~ (8 ) = ACC or ~ (8 ) = REJ, respec-
tively.

• Else, output ~ (8 ) = (@ (8+1) ,1 (8 ) ,< (8 ) ).

For example, the run from Example 6.3 is simulated by:

8 tape G (8 ) @ (8 ) 1 (8�1) < (8�1) ⌘ (8 ) 0 (8 ) ~ (8 )

1 1 ? ? 0 0 1 1
2 1 ? ? 0 0 1 1
3 BOS ? ? 0 0 1 (@1, 1, 0)
4 1

ˆ
1� · · · (@1, 1, 0) @1 1 0 0 1 (@2, � , +1)

5 �1
ˆ
� · · · (@2, � , +1) @2 � +1 1 1 (@3, x, +1)

6 �x�
ˆ
· · · (@3, x, +1) @3 x +1 2 � (@5, � ,�1)

7 �x
ˆ
� · · · (@5, � ,�1) @5 � �1 1 x (@5, x,�1)

8 �
ˆ
x� · · · (@5, x,�1) @5 x �1 0 � (@2, � , +1)

9 �x
ˆ
� · · · (@2, � , +1) @2 � +1 1 x ACC

Now we have to construct transformer layers to perform the above steps.
Each input vector contains a word embedding, eG (8 ) , and a position embedding
with 4 components:

H(0) [8] =

2666666664

eG (8 )

1/8
1
8
82

3777777775
. (6.21)
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Step 1 is piecewise linear, so it can be computed by a FFNN (Theorem 3.6). Af-
terwards, the activation vector at position 8 is:

H(1) [8] =

2666666666666664

eG (8 )

1/8
1
8
82

e@ (8 )

e1 (8�1)

< (8�1)

3777777777777775

. (6.22)

Step 2 can be computed by a uniform self-attention layer:

q(8 ) = 0 k( 9 ) = 0 v( 9 ) =


0
< (8�1)

�
. (6.23)

Uniform self-attention computes an average, not a sum. Since at time step 8 , there
are 8 positions to average over, the result is ⌘ (8 ) /8 , not ⌘ (8 ) . We’ll correct this in
the next step.

H(2) [8] =

266666666666666664

eG (8 )

1/8
1
8
82

e@ (8 )

e1 (8�1)

< (8�1)

⌘ (8 ) /8

377777777777777775

(6.24)

Step 3 is the most di�cult step. There are several schemes that have been pro-
posed for this. All of them use average-hard attention, and all of them further
modify the transformer in some way: changing dot-product to something else
(Pérez et al., 2021), adding components to the position embedding (Pérez et al.,
2021; Barceló et al., 2024; Strobl, Angluin, et al., 2024), or applying layer normal-
ization only to selected components (Merrill and Sabharwal, 2024). The construc-
tion here is closest to that of Strobl, Angluin, et al. (2024).

It uses two self-attention layers. The �rst layer changes ⌘ (8 ) /8 to ⌘ (8 ) by treat-
ing the position embeddings as a lookup table (Barceló et al., 2024).

q(8 ) =

2⌘ (8 ) /8
�1/8

�
k( 9 ) =


9
92

�
v( 9 ) =

26666664

0
9
92

eG ( 9 )

37777775
(6.25)
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q(8 ) · k( 9 ) =
1
8
9 (2⌘ (8 ) � 9). (6.26)

Then the attention scores are uniquely maximized when 9 = ⌘ (8 ) :

0 ⌘8 2⌘8

0

⌘2
8
8

9

q(
8)
·k

(9
)

So the attention layer outputs ⌘ (8 ) , and also some other quantities which we’ll
need shortly. The activation vector at position 8 is:

H(3.5) [8] =

266666666666666666666664

eG (8 )

1/8
1
8
82

e@ (8 )

e1 (8�1)

< (8�1)

⌘ (8 ) /8
⌘ (8 )

(⌘ (8 ) )2
e
G (⌘ (8 ) )

377777777777777777777775

. (6.27)

Recall that we need to search positions 9 < 8 such that ⌘ ( 9 ) = ⌘ (8 ) . But future-
masked attention looks at positions 9  8 . To get around this, we search positions
9  8 such that ⌘ ( 9�1) = ⌘ (8 ) . So we will need

⌘ (8�1) = ⌘ (8 ) �< (8�1) (6.28)

(⌘ (8�1) )2 = (⌘ (8 ) )2 � 2⌘ (8 )< (8�1) + (< (8�1) )2 (6.29)

=

(
(⌘ (8 ) )2 + 2⌘ (8 ) + 1 if< (8�1) = �1
(⌘ (8 ) )2 � 2⌘ (8 ) + 1 if< (8�1) = +1

(6.30)
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which can both be computed using a FFN. So

H(4) [8] =

2666666666666666666666666664

eG (8 )

1/8
1
8
82

e@ (8 )

e1 (8�1)

< (8�1)

⌘ (8 ) /8
⌘ (8 )

(⌘ (8 ) )2
e
G (⌘ (8 ) )

⌘ (8�1)

(⌘ (8�1) )2

3777777777777777777777777775

. (6.31)

The second self-attention layer uses another variation of the lookup trick:

q(8 ) =
266664
2⌘ (8 )

�1
1
28

377775
k( 9 ) =

266664
⌘ ( 9�1)

(⌘ ( 9�1) )2
9

377775
v( 9 ) =

266664
0

⌘ ( 9�1)

e1 ( 9�1)

377775
(6.32)

q(8 ) · k( 9 ) = ⌘ ( 9�1) (2⌘ (8 ) � ⌘ ( 9�1) )|                      {z                      }
�nd ⌘ ( 9�1) = ⌘ (8 )

+ 9

28|{z}
�nd rightmost

(6.33)

The �rst term is maximized when ⌘ ( 9�1) = ⌘ (8 ) . If there is more than one such
position 9 , then because of the second term, 9⇤ is the rightmost such 9 . If there’s
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no such position 9 , then ⌘ ( 9⇤�1) < ⌘ (8 ) .

H(4.5) [8] =

26666666666666666666666666666664

eG (8 )

1/8
1
8
82

e@ (8 )

e1 (8�1)

< (8�1)

⌘ (8 ) /8
⌘ (8 )

(⌘ (8 ) )2
e
G (⌘ (8 ) )

⌘ (8�1)

(⌘ (8�1) )2
⌘ ( 9⇤�1)

e1 ( 9⇤�1)

37777777777777777777777777777775

. (6.34)

Finally, we can use the FFNN to set

0 (8 ) =

(
1 ( 9⇤�1) ⌘ ( 9⇤�1) = ⌘ (8 ) and 1 ( 9⇤�1) < ?
G (⌘ (8 ) ) otherwise.

(6.35)

So the activation vectors are:

H(5) [8] =

2666666666666666666666666666666664

eG (8 )

1/8
1
8
82

e@ (8 )

e1 (8�1)

< (8�1)

⌘ (8 ) /8
⌘ (8 )

(⌘ (8 ) )2
e
G (⌘ (8 ) )

⌘ (8�1)

(⌘ (8�1) )2
⌘ ( 9⇤�1)

e1 ( 9⇤�1)

e0 (8 )

3777777777777777777777777777777775

. (6.36)
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Step 4 is piecewise linear, so it can be computed by a FFNN (Theorem 3.6).

6.2.2 Encoders with unique-hard attention
Unique-hard attention has been studied in several papers (Hahn, 2020; Hao et al.,
2022; Barceló et al., 2024). Here, we look at the results of Angluin et al. (2023),
which exactly characterize transformers with rightmost hard attention and strict
future masking.

Strict future masking means that each position 8 attends to positions 9 < 8 .
If 8 is the leftmost position, all positions are masked out, so (following Merrill
and Sabharwal (2024)) the attention output is just the zero vector.

Theorem 6.5. For any transformer encoder ) with rightmost hard attention and
strict futuremasking, there is a closed formula of FO that de�nes the same language
that ) recognizes.

The proof hinges on the fact that in a unique hard attention transformer, each
activation vector depends on at most two vectors from the layer below. Because
the network has �xed, �nite depth, there is a �xed, �nite number of possible
activation vectors that it can compute.

Lemma 6.6. Let) be a unique (leftmost or rightmost) hard attention transformer.
There is a �nite set F ✓ R such that for any input string F , all the attention scores
and activation values computed by ) (F) belong to F.
Proof. Weprove that the self-attention at layer ✓ has atmost ( |⌃|+1)2✓�1 di�erent
possible output vectors, by induction on ✓ .

Base case (✓ = 0): Since there are no position embeddings, the embedding at
position 8 is determined entirely byF8 , so there are at most |⌃| possible activation
vectors.

Inductive step (✓ > 0): Assume that the output of the layer ✓ has at most
( |⌃| + 1)2✓ � 1 possible activation vectors, and consider layer (✓ + 1):

• The attention output at position 8 depends only on H(✓ ) [8] (because of the
residual connection) and H(✓ ) [ 98 ] (where 98 is the position that 8 attends
to). So the number of possible output activation vectors is at most

�
( |⌃| + 1)2✓ � 1

�
( |⌃| + 1)2✓ 

�
( |⌃| + 1)2✓ � 1

� ⇣
( |⌃| + 1)2✓ + 1

⌘

=
⇣
( |⌃| + 1)2✓

⌘2
� 1

= ( |⌃| + 1)2✓+1 � 1.

• Because the FFNN and layernorms operate position-wise, they also have
at most ( |⌃| + 1)2✓+1 � 1 possible activation vectors.
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Therefore, the number of possible output vectors from a self-attention or FFNN
at layer ✓ is at most ( |⌃| + 1)2✓ � 1.

Additionally, the attention score from position 8 to 9 depends only on H(✓ ) [8]
andH(✓ ) [ 9], so there are at most

�
( |⌃| +1)2✓ �1

�2  ( |⌃| +1)2✓+1 possible attention
scores.

Then F is the union over all layers of the possible attention scores and com-
ponents of the possible activation vectors. ⇤

Although it’s not the most e�cient way to do it, we can represent an activa-
tion value - (F) as a set of FO formulas (qE)E2F, such that F |= qE i� - (F) = E .
Angluin et al. (2023) show how to do this with $ (log |F|) formulas instead.

De�nition 6.7. Let : � 0. A function - : ⌃⇤ ⇥ N: ! F is de�nable by FO
formulas (jE (G1, . . . , G: ))E2F if for allF 2 ⌃⇤ and E 2 F, we have- (F , 81, . . . , 8: ) =
E i�F |= jE (81, . . . , 8: ).

Lemma 6.8. Let F ✓ R be a �nite set. If - : ⌃⇤ ! F is de�nable by FO formulas
qE , and 5 : F! F, then there are FO formulas q 0

E that de�ne 5 (- (F)).

Proof.
q 0
E =

‹
D2F

E=5 (D )

qD . (6.37)

⇤

Hopefully, it is easy to see how the above result generalizes to the cases where
- maps to a sequence of activations and/or 5 is a function of two or more argu-
ments.

Proof of Theorem 6.5. For every activation value H(✓ ) [8,:] (F), we will construct
a formula q✓,:,E (G) such that F |= q✓,:,E (8) i� H(✓ ) [8,:] (F) = E . We do this by
induction on ✓ .

Case ✓ = 0:
q0,:,E (G) =

‹
02⌃

emb(0) [: ]=E

&0 (G). (6.38)

Case ✓ > 0: By Lemma 6.8, there are formulas score✓,E (8, 9) that de�ne s(✓ ) [8, 9],
the attention score at layer ✓ from position 8 to 9 . Furthermore, there is a formula
score✓, (8, 91, 92) that holds i� s(✓ ) [8, 91]  s(✓ ) [8, 92] and formulas value✓,:,E ( 9)
that de�neWV (X[ 9]), the value at position 9 . Then we can de�ne a formula that
tests whether position G attends to position ~:

weight✓ (G,~) = ~ < G ^ 8~0 [(~0 < ~ ! score✓, (G,~0,~))
^ (~ < ~0 < G ! ¬score✓, (G,~,~0))] .

(6.39)
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and formulas that de�ne Y[G] [:], the :-th component of the attention output at
position G :

att✓,:,E (G) =
(
9~ [weight✓ (G,~) ^ value✓,:,E (~)] E < 0
9~ [weight✓ (G,~) ^ value✓,:,E (~)] _ ¬9~ [~ < G] E = 0.

(6.40)

By Lemma 6.8 again, there are formulas q✓,:,E that de�ne the output of the FFNN.
Finally, the activation vector at the last position is de�ned by 9=.(8G .G 

=) ^q!,:,E (=), and by Lemma 6.8, there is a single closed formula that de�nes the
output of ) . ⇤

To go in the other direction, we use the fact that PTL is equivalent to FO
(Kamp, 1968) and do an easier conversion from PTL.

Theorem6.9. For any formulaq of PTL, there is a transformer encoder with right-
most hard attention and strict future masking that recognizes the same language
that q de�nes.

The proof will be by induction on the structure ofq , so we need the following
lemma for combining the translations of sister subformulas.

Lemma 6.10 (Parallel composition). Given transformer encoders without layer
normalization

tfr1 : ⌃
⇤ lp! (R31 )⇤

tfr2 : ⌃
⇤ lp! (R32 )⇤

there is a transformer

tfr1 � tfr2 : ⌃
⇤ lp! (R31+32 )⇤

such that for all stringsF 2 ⌃⇤,

(tfr1 � tfr2) (F [1] · · ·F [=]) =

tfr1 (F) [1]
tfr2 (F) [1]

�
· · ·


tfr1 (F) [=]
tfr2 (F) [=]

�
. (6.41)

Proof. Let 31 and 32 be the width of tfr1 and tfr2, and let 3 = 31 + 32. If one of
tfr1 and tfr2 has fewer layers than the other, add trivial layers until they have the
same number of layers !.

The new transformer has embedding layer

(tfr1 � tfr2).emb(F [1] · · ·F [=]) =

tfr1.emb(F) [1]
tfr2.emb(F) [1]

�
· · ·


tfr1.emb(F) [=]
tfr2.emb(F) [=]

�
.

CSE 60963: Theory of Neural Networks Version of June 4, 2024



DR
AF
T

Chapter 6. Transformers 64

For each layer ✓ 2 [!], let 51 = tfr1.layer✓ and 52 = tfr2.layer✓ . Widen 51 into
a layer 5 01 with width 3 as follows.

5 01 .W
Q =

⇥
51 .WQ 0

⇤
5 01 .W

K =
⇥
51.WK 0

⇤
5 01 .W

V =

51.WV 0
0 0

�

5 01 .lin1.W =

51.lin1 .W 0

0 0

�
5 01 .lin1 .b =


51.lin1 .b

0

�

5 01 .lin2.W =

51 .lin2 .W 0

0 0

�
5 01 .lin2 .b =


51.lin2 .b

0

�

Similarly, widen 52 into a layer 5 02 with width 3 , but using the bottom half of the
activation vectors:

5 02 .W
Q =

⇥
0 52.WQ⇤

5 02 .W
K =

⇥
0 52.WK⇤

5 02 .W
V =


0 0
0 52.WV

�

5 02 .lin1.W =

0 0
0 52.lin1.W

�
5 02 .lin1 .b =


0

52.lin1 .b

�

5 02 .lin2.W =

0 0
0 52.lin2.W

�
5 02 .lin2 .b =


0

52.lin2 .b

�

Then stack 5 01 on top of 5 02 , or the other way around. (If we had multi-head at-
tention, we could have combined 51 and 52 into a single layer.) ⇤

Proof of Theorem 6.9. For any PTL formula q , there is a transformer tfrq and an
index : such that i� tfrq (F) [8,:] = I[F , 8 |= q]. We show this by induction on
the structure of q .

Base case q = &0 for some 0 2 ⌃: Then tfrq is just an embedding function

tfrq (F) [8] =
⇥
I[F [8] = 0]

⇤
. (6.42)

Ifq = ¬q1: By the induction hypothesis, there is a transformer tfr1 simulating
q1. For simplicity, we write activation vectors with just the components we’re
interested in:

tfrq1
(F) [8] =


I[F , 8 |= q1]

0

�
. (6.43)

We can add a trivial self-attention layer and, by Theorem 3.5, a FFNN to simulate
q = ¬q1:

�n¬(tfrq1
(F)) [8] =


0

I[F , 8 |= ¬q1]

�
. (6.44)

CSE 60963: Theory of Neural Networks Version of June 4, 2024



DR
AF
T

Chapter 6. Transformers 65

If q = q1 ^ q2, q1 _ q2: By the induction hypothesis, there are transformers
tfr1 and tfr2 simulatingq1 andq2, respectively. Combine these using Lemma 6.10,
add a trivial self-attention layer and, by Theorem 3.5, a FFNN to simulate q .

If q = q1 since q2: By the induction hypothesis, there are transformers tfr1
and tfr2 simulating q1 and q2, respectively. Combine these using Lemma 6.10.
For simplicity, we write activation vectors as

H8 (F) =
266664
I[F , 8 |= q1]
I[F , 8 |= q2]

0

377775
(6.45)

suppressing all other coordinates.
Then we add a self-attention layer:

q(8 ) =
⇥
1
⇤

k( 9 ) =
⇥
I[¬(F , 9 |= q1) _ (F , 9 |= q2)]

⇤
(6.46)

v( 9 ) =
266664

0
0

F , 9 |= q2

377775
. (6.47)

For any position 8 , the position 98 that receives attention is the rightmost one
left of 8 that either satis�es q2 (in which case q1 must be satis�ed from 98 to 8
exclusive) or does not satisfy q1 (in which case q2 must not be satis�ed from 98
to 8 exclusive). These two possibilities are pictured below:

98 8

q2

q1

q1 since q2

98 8

q2

q1

q1 since q2

Then 8 satis�es (q1 since q2) if and only if 98 satis�es q2. So the value tests for
whether q2 is satis�ed.

At the leftmost position (8 = 1), (q1 since q2) is false, so it’s correct that the
attention outputs the zero vector. ⇤

Since this construction uses only position-independent queries (0 or 1), a
perhaps surprising consequence is that every transformer encoder with right-
most hard attention and strict future masking is equivalent to one that uses only
position-independent queries.
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6.2.3 Encoders with soft attention
In this section, we consider transformers that don’t have the added power of in-
termediate steps, and don’t have the restriction of unique-hard attention. This
seems to be the most di�cult case to pin down. One key issue is that while
unique-hard and average-hard attention only produce rational numbers, soft at-
tention produces real numbers. So far, attempts to obtain upper bounds on the
expressivity of soft-attention transformers involve limiting the precision of the
numbers involved.

Actual computers, of course, use �oating-point numbers with a constant (that
is, independent of =) bits. But Merrill and Sabharwal (2023a) argue that in $ (1)
precision, attention cannot attend uniformly to a string of length =, because for
large enough =, the attention weights (U) would all round down to zero. Instead,
they use $ (log=) bits of precision.
Theorem 6.11 (Merrill and Sabharwal, 2023a). For any$ (log=)-precision trans-
former encoder ) that recognizes a language !, there is a formula of FOM[BIT]
that de�nes !.

Merrill and Sabharwal (2023a) use �oating-point numbers, of the form< · 24 ,
where the mantissa < has $ (log=) bits including a sign bit, and the exponent
4 has $ (log=) bits including a sign bit. In theoretical papers, I think it’s more
common to use a �xed-point representation, in which 4 is constant. With �xed-
point numbers, it appears to be possible to improve the result to $ (=) bits of
precision. We will consider both possibilities.

Proof. Merrill and Sabharwal (2023a)’s proof converted) to a family of threshold
circuits, but we show how to go straight to FOM[BIT].

Transformers only use a handful of operations: addition, multiplication, di-
vision, max, exp, and iterated addition. It su�ces to show that these operations
can be de�ned in FO[BIT] on $ (log=)-bit �xed- or �oating-point numbers.

Addition andmultiplication, already de�ned on integers in Theorem 5.19, are
generalized to 2 log= bit integers (where 2 > 1) by Schweikardt (2005, Theorem
3.4bd). Then �xed-point addition and multiplication can be de�ned using the
following facts:

(<1 · 24 ) + (<2 · 24 ) = (<1 +<2) · 24 (6.48)
(<1 · 24 ) · (<2 · 24 ) = (<1<2 · 24 ) · 24 (6.49)

Similarly for �oating-point:

(<1 · 241 ) + (<2 · 242 ) =
(
(<1 +<2 · 242�41 ) · 241 41 � 42
(<1 · 241�42 +<2) · 242 41  42

(6.50)

(<1 · 241 ) · (<2 · 242 ) =<1<2 · 241+42 . (6.51)
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In all of the above, to get mantissas to be integers with the right number of bits,
some rounding may be necessary. Division can be de�ned in terms of multiplica-
tion.

Iterated addition on �xed-point numbers reduces to iterated addition on in-
tegers:

=’
8=1

(<8 · 24 ) =
 

=’
8=1

<8

!
· 24 . (6.52)

The sum of the<8 is only a mild extension of Theorem 5.26. After counting the
bits in each column, we end up with 2 log= numbers with log= bits each. We sum
each block of log= numbers and then add the resulting 2 block-sums.

On �oating-point numbers, iterated addition is more di�cult:

=’
8=1

(<8 · 248 ) =
 

=’
8=1

(<8 · 248�4 )|       {z       }
(⇤)

!
· 24 (6.53)

where (⇤) is rounded o� to the nearest integer. The problem is that if some of the
<8 are negative, the sum could end up much smaller than the largest summand.
For example, suppose mantissas have 50 bits, and we want to compute

1 · 20 + �1 · 20 + 1 · 2�100 = 1 · 2�100 .

If we choose 4 to be the maximum of the 48 , then 1 · 2�100 would round o� to 0,
giving a sum of 0. (This is known as catastrophic cancellation.) Instead, to make
the sum exact, Merrill and Sabharwal (2023b) choose 4 to be the minimum of
the 48 , which makes each (⇤) into a $ (poly(=))-bit integer. Iterated addition of
these so-called long integers is still possible in FOM[BIT] (Barrington and Ma-
ciel, 2000, Lecture 7). But if we had started with$ (=) bits, we would at this point
have an exponential number of bits.

For the exponential function (expG ), �rst observe that

expG = exp2 (G/log 2) (6.54)
= exp2 (bG/log 2c) exp2 (G/log 2 � bG/log 2c) (6.55)
= exp2 (bG/log 2c) exp(G � bG/log 2c log 2|                  {z                  }

A

). (6.56)

The �rst factor can be computed by shifting. The second factor can be approxi-
mated by a Taylor series (Merrill, p.c.; Hesse et al., 2002, Corollary 6.5):

exp A =
1’
8=0

1
8!
A 8 =

:’
8=0

1
8!
A 8 + ': (6.57)

CSE 60963: Theory of Neural Networks Version of June 4, 2024



DR
AF
T

Chapter 6. Transformers 68

where the Lagrange remainder term ': is, for some I in (0, A ),

': =
exp I
(: + 1)!A

:+1 <
exp A
(: + 1)!A

:+1 <
2

(: + 1)!A
:+1  2

2:+1
A:+1 <

1
2:

. (6.58)

Letting : = 2 log= + 1 ensures that the approximation is good to 2 log= bits.
So we compute Eq. (6.57) minus the remainder term ': . Each term is an it-

erated product of $ (log=) numbers, which can be expressed in FO[BIT] (Hesse
et al., 2002, Theorem 5.1), and the summation of 2 log= + 2 terms can also be
expressed in FO[BIT]. ⇤
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