
Chapter 7

Transformers with softmax
attention

In this section, we consider transformers that use softmax attention (as they do in
practice). This seems to be the most difficult case to pin down. There are a num-
ber of upper bounds (transformers only recognize languages in some complexity
class) and lower bounds (transformers can recognize any language in some com-
plexity class), but no exact characterizations yet.

Here, we will look at one upper bound and one lower bound. Both of them
are based on logics we’ve seen already, but extend them to allow counting and
arithmetic.

7.1 Upper Bound

Upper bounds seem to require assuming some limitation on attention or nu-
meric precision, or both. Strobl (2023) showed that average-hard attention trans-
formers with 𝑂 (log𝑛)-bit floating-point numbers only recognize languages in L
(log-space) uniform TC0. Here, we’ll present the result of Merrill and Sabharwal
(2023a) that SMATs with𝑂 (log𝑛)-bit floating-point numbers can only recognize
languages in DLOGTIME-uniform TC0, which is equivalent to first-order logic
with counting quantifiers, addition, and multiplication.

7.1.1 Precision
One key issue is that while unique-hard and average-hard attention only produce
rational numbers, soft attention produces real numbers. So far, attempts to obtain

79

Chapter 7. Transformers with softmax attention 80

upper bounds on the expressivity of soft-attention transformers involve limiting
the precision of the numbers involved.

Actual computers, of course, use floating-point numberswith a constant num-
ber of bits – usually 16 or 32. ButMerrill and Sabharwal (2023a) argue that in𝑂 (1)
precision, attention cannot attend uniformly to a string of length 𝑛, because for
large enough 𝑛, the attention weights (𝛼) would all round down to zero. Instead,
they use𝑂 (log𝑛) bits of precision. Specifically, they use floating-point numbers,
of the form𝑚 · 2𝑒 , where the mantissa𝑚 has 𝑂 (log𝑛) bits including a sign bit,
and the exponent 𝑒 has𝑂 (log𝑛) bits including a sign bit. Our definition is slightly
different from theirs:

Definition 7.1. A floating-point number with 𝑝 bits (where 𝑝 is even) is a pair
(𝑚, 𝑒) where𝑚, 𝑒 are integers in [−2𝑝/2−1, 2𝑝/2−1). Its value is𝑚 · 2𝑒 .

7.1.2 Arithmetic predicates
We can increase the expressivity of FO by adding more predicates besides <.

The syntax of FO[+,×] is that of FO, as well as:

𝜙 ::= 𝑄𝜎 (𝑡1) 𝜎 ∈ Σ

| 𝑡1 = 𝑡2 | 𝑡1 < 𝑡2
𝑡 ::= 𝑥 | 𝑡1 + 𝑡2 | 𝑡1 × 𝑡2

We extend the definition of FV and of interpretations 𝐼 to terms as follows:

FV(𝑡1 + 𝑡2) = FV(𝑡1) ∪ FV(𝑡2)
FV(𝑡1 × 𝑡2) = FV(𝑡1) ∪ FV(𝑡2)
𝐼 (𝑡1 + 𝑡2) = 𝐼 (𝑡1) + 𝐼 (𝑡2)
𝐼 (𝑡1 × 𝑡2) = 𝐼 (𝑡1) 𝐼 (𝑡2).

Then the definition of |= is the same as before. Note that ∀ and ∃ still quantify
over positions of the input string, that is, over [𝑛].

Example 7.2. The following formula of FO[+,×] tests whether a number is odd:

ODD(𝑥) = ¬(∃𝑦.𝑦 + 𝑦 = 𝑥). (7.1)

Exercise 7.3. Write formulas

1. SUB(𝑥,𝑦, 𝑧) such that

w, 𝐼 |= SUB(𝑥,𝑦, 𝑧) if 𝐼 (𝑥) − 𝐼 (𝑦) = 𝐼 (𝑧)

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 81

2. DIV(𝑥,𝑦, 𝑞, 𝑟) such that

w, 𝐼 |= DIV(𝑥,𝑦, 𝑞, 𝑟) if ⌊𝐼 (𝑥)/𝐼 (𝑦)⌋ = 𝐼 (𝑞) and 𝐼 (𝑥) ≡ 𝐼 (𝑟) mod 𝐼 (𝑦)

Previously we were unable to state a nice correspondence between FO and
AC0, but now we can:

Theorem 7.4 (Barrington, Immerman, et al., 1990). FO[+,×] defines exactly the
languages in DLOGTIME-uniform AC0.

Using + and ×, we can define many other arithmetic operations.

Theorem 7.5. The following formulas are definable in FO[+,×]:

(a) POW(𝑥,𝑦, 𝑧) iff 𝑧 = 𝑥𝑦

(b) BIT(𝑥,𝑦, 𝑧) iff the 𝑦-th bit in the binary representation of 𝑥 is 𝑧 (Immerman,
1999, Theorem 1.17.2)

It is also possible (and in fact more common) to make BIT the built-in predi-
cate, and to define in FO[BIT] predicates ADD and MUL.

Furthermore, while a variable stands for a number in [𝑛], we can also do
limited arithmetic on much bigger numbers. A number with 𝑛 bits can be repre-
sented by a formula 𝜙 (𝑥) that is true if the 𝑥-th bit is 1. A number with 𝑛𝑘 bits
can be represented by a formula 𝜙 (𝑥0, . . . , 𝑥𝑘−1) that is true if the (𝑥0 + 𝑥1𝑛 +
𝑥2𝑛

2 + · · · + 𝑥𝑘−1𝑛𝑘−1)-th bit is 1.

Theorem 7.6. The following operations on𝑂 (poly(𝑛)) bit integers are expressible
in FO[+,×]:

(a) Addition of two numbers

(b) Comparison of two numbers

(c) Maximum of 𝑛 numbers.

7.1.3 Counting quantifiers
FOC is first order logic with counting terms (Benthem and Icard, 2023).

Example 7.7. The majority language,

MAJORITY = {w ∈ {0, 1}∗ | w has more 1’s than 0’s}. (7.2)

can be defined by the FOC formula

(#𝑧.𝑄0 (𝑧))︸ ︷︷ ︸
number of 0’s

< (#𝑧.𝑄1 (𝑧))︸ ︷︷ ︸
number of 1’s

. (7.3)

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 82

Exercise 7.8. Write a FOC formula for

PARITY = {w ∈ {0, 1}∗ | w has an odd number of 1’s}. (7.4)

The syntax of FOC is:

𝑡 ::= 𝑥 | #𝑥 .𝜙1 (7.5)
𝜙 ::= 𝑄𝜎 (𝑡1) 𝜎 ∈ Σ (7.6)

| 𝑡1 = 𝑡2 | 𝑡1 < 𝑡2 (7.7)
| 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | ¬𝜙1 (7.8)
| ∀𝑥 .𝜙1 | ∃𝑥 .𝜙1 (7.9)

We extend the definition of free variables (Eq. (6.5)) with:

FV(𝑥) = {𝑥} (7.10)
FV(𝑄𝜎 (𝑡1)) = FV(𝑡1) 𝜎 ∈ Σ (7.11)
FV(𝑡1 = 𝑡2) = FV(𝑡1) ∪ FV(𝑡2) (7.12)
FV(𝑡1 < 𝑡2) = FV(𝑡1) ∪ FV(𝑡2) (7.13)
FV(#𝑥 .𝜙1) = FV(𝜙1) \ {𝑥} (7.14)

Terms are interpreted as integers, as follows:

𝑥w,𝐼 = 𝐼 (𝑥) (7.15)
(#𝑥 .𝜙1)w,𝐼 = |{𝑖 ∈ [|w|] | w, 𝐼 [𝑥 ↦→ 𝑖] |= 𝜙1}| (7.16)

And we extend the definition of |= (Eq. (6.9)) with:

w, 𝐼 |= 𝑄𝜎 (𝑡1) if𝑤
𝑡
w,𝐼
1

= 𝜎 (7.17)

w, 𝐼 |= 𝑡1 = 𝑡2 if 𝑡w,𝐼1 = 𝑡
w,𝐼
2 (7.18)

w, 𝐼 |= 𝑡1 < 𝑡2 if 𝑡w,𝐼1 < 𝑡
w,𝐼
2 (7.19)

FOC is sometimes defined using counting quantifiers (Immerman, 1999, p. 185–
187), but the formulation above is equivalent and (we think) easier to use.

There is another logic called FOM, which is first-order logic with majority
quantifiers. FOC and FOM are equivalent (Lange, 2004), and because FOM is
more well-known, we’ll also often refer to the class of languages that they both
recognize as FOM.

The ability to count becomes more interesting when we can do something
with counts other than compare them. Addition is actually already definable in
FOC and FOM (Lange, 2004), so introducing + doesn’t increase its expressivity,
but introducing × does.

Threshold circuits and majority/counting in first-order logic are related by
the following:

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 83

Theorem 7.9 (Barrington, Immerman, et al., 1990). FOM[×] defines exactly the
languages in DLOGTIME-uniform TC0.

In FOM[×] we can do a surprising amount of arithmetic on large numbers.

Theorem 7.10. The following operations on 𝑂 (poly(𝑛)) bit integers are express-
ible in FOM[×]:

(a) Iterated addition of 𝑛 numbers

(b) Multiplication of two numbers

(c) Iterated multiplication of 𝑛 numbers

(d) Truncated division of two numbers.

Proof. Iterated addition (a) is shown, for example, by Barrington and Maciel
(2000, Lecture 7, Section 2), and multiplication (b) is closely related.

Iterated multiplication (c) was proven to be in DLOGTIME-uniform TC0 by
Hesse et al. (2002, Theorem 5.1) and can be used for truncated division (d). □

7.1.4 Main result
Theorem 7.11 (Merrill and Sabharwal, 2023a). For any𝑂 (log𝑛)-precision trans-
former encoder 𝑇 that recognizes a language 𝐿, there is a formula of FOM[×] that
defines 𝐿.

Proof. Merrill and Sabharwal (2023a)’s proof converted𝑇 to a family of threshold
circuits, but we show how to go straight to FOM[×].

Transformers only use a handful of operations: addition, multiplication, di-
vision, max, exp, and iterated addition. It suffices to show that these operations
can be defined in FOM[×] on 𝑂 (log𝑛)-bit floating-point numbers.

Addition and multiplication, already defined on integers in Theorem 7.5, are
generalized to 𝑐 log𝑛 bit integers (where 𝑐 > 1) by Schweikardt (2005, Theorem
3.4bd). Then floating-point addition and multiplication can be defined using the
following facts:

(𝑚1 · 2𝑒1) + (𝑚2 · 2𝑒2) =
{
(𝑚1 +𝑚2 · 2𝑒2−𝑒1) · 2𝑒1 𝑒1 ≥ 𝑒2
(𝑚1 · 2𝑒1−𝑒2 +𝑚2) · 2𝑒2 𝑒1 ≤ 𝑒2

(7.20)

(𝑚1 · 2𝑒1) · (𝑚2 · 2𝑒2) =𝑚1𝑚2 · 2𝑒1+𝑒2 . (7.21)

In all of the above, to get mantissas to be integers with the right number of bits,
some rounding may be necessary. Division can be defined in terms of multiplica-
tion.

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 84

Iterated addition on floating-point numbers is more difficult:

𝑛−1∑︁
𝑖=0

(𝑚𝑖 · 2𝑒𝑖) =
(
𝑛−1∑︁
𝑖=0

(𝑚𝑖 · 2𝑒𝑖−𝑒)︸ ︷︷ ︸
(∗)

)
· 2𝑒 (7.22)

where (∗) is rounded off to the nearest integer. The problem is that if some of the
𝑚𝑖 are negative, the sum could end up much smaller than the largest summand.
For example, suppose mantissas have 50 bits, and we want to compute

1 · 20 + −1 · 20 + 1 · 2−100 = 1 · 2−100 .

If we choose 𝑒 to be the maximum of the 𝑒𝑖 , then 1 · 2−100 would round off to 0,
giving a sum of 0. (This is known as catastrophic cancellation.) Instead, to make
the sum exact, Merrill and Sabharwal (2023b) choose 𝑒 to be theminimum of the
𝑒𝑖 , which makes each (∗) into a𝑂 (poly(𝑛))-bit integer. Iterated addition of these
so-called long integers is still possible in FOM[×] (Barrington and Maciel, 2000,
Lecture 7). (But if we had started with 𝑂 (𝑛) bits, we would at this point have an
exponential number of bits, so we’d need a different trick (Chiang, 2024)).

For the exponential function (exp𝑥), first observe that

exp𝑥 = exp2 (𝑥/log 2) (7.23)
= exp2 (⌊𝑥/log 2⌋) exp2 (𝑥/log 2 − ⌊𝑥/log 2⌋) (7.24)
= exp2 (⌊𝑥/log 2⌋) exp(𝑥 − ⌊𝑥/log 2⌋ log 2︸ ︷︷ ︸

𝑟

). (7.25)

The first factor is just an integer power of 2. The second factor still involves exp,
but now we know that 0 ≤ 𝑟 < log 2, which is small enough that exp 𝑟 can
be approximated by a truncated Taylor series (Merrill, p.c.; Hesse et al., 2002,
Corollary 6.5). Let 𝑝 ∈ 𝑂 (log𝑛) be the number of bits of precision. Then we take
the first 𝑝 terms of the Taylor series about 0:

exp 𝑟 =
∞∑︁
𝑖=0

1
𝑖!𝑟

𝑖 =

𝑝−1∑︁
𝑖=0

1
𝑖!𝑟

𝑖 + 𝑅𝑝 (7.26)

where the Lagrange remainder term 𝑅𝑝 is, for some 𝑧 in (0, 𝑟),

𝑅𝑝 =
exp 𝑧
𝑝! 𝑟𝑝 <

exp 𝑟
𝑝! 𝑟𝑝 <

2
𝑝!𝑟

𝑝 ≤ 2
2𝑝 𝑟

𝑝 <
1

2𝑝−1 . (7.27)

This means that our approximation has an error of at most “1 ulp” (unit in the
last place), typical for floating-point library implementations. (CUDA guarantees
an error of at most 2 ulp.)

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 85

So we compute Eq. (7.26) sans the remainder term 𝑅𝑝 . Each term is an iterated
product of𝑂 (𝑝) = 𝑂 (log𝑛) numbers, which can be expressed in FO[+,×] (Hesse
et al., 2002, Theorem 5.1), and the summation of 𝑝 ∈ 𝑂 (log(𝑛)) terms can also be
expressed in FO[+,×] (Immerman, 1999). □

7.2 Lower Bound

With unique-hard attention, we were able to show an exact equivalence to FO
and LTL. But softmax attention is trickier.

• Bhattamishra et al. (2020) showed that one-state Parikh automata can be
simulated by SMATs.

• Chiang et al. (2023) defined a logic called FOC[+; MOD] and showed that
it can be simulated by SMATs.

• Barceló et al. (2024) defined an extension of LTL with counting, called
LTL[#, +], and showed that it can be simulated by AHATs.

• Perhaps surprisingly, there isn’t a published proof that softmax-attention
transformers can simulate LTL (but we’re working on it).

Here, we show that softmax-attention transformers can simulate a temporal logic
without since but with a counting operator (Yang and Chiang, 2024). We call this
logic Kt [#, +].

7.2.1 Kt [#, +]
The syntax of Kt [#, +] is defined as follows:

𝑡 ::= #[𝜙1] (7.28)
| 𝑡1 + 𝑡2 (7.29)

𝜙 ::= 𝑄𝜎 𝜎 ∈ Σ (7.30)
| 𝜙1 ∧ 𝜙2 | ¬𝜙1 (7.31)
| 𝑡1 = 𝑡2 | 𝑡1 < 𝑡2 (7.32)

Other operators (∨,→, >, ≤, ≥) can be defined in terms of the ones above.
Terms are interpreted as integers. If 𝑡 is a term, we write its interpretation

with respect to string w and position 𝑖 as 𝑡w,𝑖 , defined as follows.

#[𝜙1]w,𝑖 = |{ 𝑗 ≤ 𝑖 | w, 𝑗 |= 𝜙1}| (7.33)
(𝑡1 + 𝑡2)w,𝑖 = 𝑡w,𝑖1 + 𝑡w,𝑖2 (7.34)

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 86

And we define the semantics as follows:

w, 𝑖 |= 𝑄𝜎 iff w[𝑖] = 𝜎 (7.35)
w, 𝑖 |= 𝜙1 ∧ 𝜙2 iff w, 𝑖 |= 𝜙1 and w, 𝑖 |= 𝜙2 (7.36)
w, 𝑖 |= ¬𝜙 iff w, 𝑖 ̸ |= 𝜙 (7.37)
w, 𝑖 |= 𝑡1 = 𝑡2 iff 𝑡w,𝑖1 = 𝑡

w,𝑖
2 (7.38)

w, 𝑖 |= 𝑡1 < 𝑡2 iff 𝑡w,𝑖1 < 𝑡
w,𝑖
2 (7.39)

Unlike Barceló et al. (2024)’s LTL[#, +], we do not have formulas 𝑃 (𝑡) where 𝑃 is
a predicate other than = or <.
Example 7.12. Below are some example Kt [#, +] formulas and the languages
they define:

Language Formula
a∗b∗ #[𝑄a ∧ (#[𝑄b] ≥ 1)] = 0
a∗b∗a∗ #[𝑄b ∧ #[𝑄a ∧ (#[𝑄b] ≥ 1)] ≥ 1] = 0
a𝑛b𝑛c𝑛 #[𝑄b ∧ (#[𝑄c] = 0)] = #[𝑄b]

∧ #[𝑄a ∧ (#[𝑄b ∨𝑄c] = 0)] = #[𝑄a]
∧ #[𝑄a] = #[𝑄b] ∧ #[𝑄b] = #[𝑄c] ∧ #[𝑄c] = #[𝑄a]

Dyck-1
(
#[𝑄(] = #[𝑄)]

)
∧

(
#[#[𝑄)] > #[𝑄(]] = 0

)
hello #[⊤] = 5 ∧𝑄o ∧ #[𝑄l ∧ #[𝑄e ∧ #[𝑄h] = 1] = 1] = 2

7.2.2 Boolean and count representations
Many proofs of transformer lower bounds ignore the effects of layer normaliza-
tion (Section 5.1.3). Here, layer normalization is actually a key part of the con-
struction, so we will treat it with care.

First, we will ensure that the mean of every vector is zero, so that layer nor-
malization does not add or subtract anything. Second, we will design the trans-
former so that if layer normalization scales a vector, it has no effect on the result
of the computation. To help us keep track of any scaling, we initially ensure that
the word/position embedding has as its 0th and 1st coordinates[

1
−1

]
.

Each vector contains Boolean values and counts. Instead of representing Boolean
values as {0, 1}, we use the following zero-mean representations:

true :
[
−1
1

]
false :

[
1

−1

]
.

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 87

Similarly, to represent the integer 𝐶 in position 𝑖 , we use[
𝐶
𝑖+1

− 𝐶
𝑖+1

]
.

The input is a string of symbols as usual, but we require a BOS token to be
prepended to the beginning of the input (or else we require that 1/(𝑖 + 1) be in
the position embedding of 𝑖).

Let A ∈ (R𝑑)∗ be a sequence of activation vectors (cf. Eqs. (5.19) and (5.20)).
Assume that all subformulas and subterms of 𝜙 are numbered uniquely (that is,
if 𝜙𝑘 is a subformula and 𝐶𝑘 ′ is a subterm, then 𝑘 ≠ 𝑘 ′). Each subformula 𝜙𝑘 is
stored as two elements of A(𝑖) . But at position 0, we always store a false value.
Writing 𝜙𝑘 (𝑖) as shorthand for I[𝜙𝑘 (𝑖)]:

A[0, 2𝑘 : 2𝑘 + 1] =
[

1
−1

]
A[𝑖, 2𝑘 : 2𝑘 + 1] =

[
−2𝜙𝑘 (𝑖) + 1
2𝜙𝑘 (𝑖) − 1

]
𝑖 > 0.

(7.40)

Similarly, each count term 𝐶𝑘 is stored as:

A[0, 2𝑘 : 2𝑘 + 1] =
[
0
0

]
A[1, 2𝑘 : 2𝑘 + 1] =

[
−𝐶𝑘 (𝑖)

𝑖+1
𝐶𝑘 (𝑖)
𝑖+1

]
𝑖 > 0.

(7.41)

The division of𝐶𝑘 (𝑖) by (𝑖+1) is a consequence of the fact that attention computes
an average rather than a sum. Dealing with these divisions is a common feature
of many transformer constructions. In contrast to other constructions that undo
the divisions using nonstandard embeddings (Pérez et al., 2021; Barceló et al.,
2024) or nonstandard versions of layer normalization (Merrill and Sabharwal,
2024), our construction uses no position embeddings and only standard layer
normalization.

7.2.3 Counting
Counting is one of the important primitive operations that a transformer can
perform. In the following, we show how to simulate a # term in Kt [#, +] using a
uniform attention layer.

Lemma 7.13. Let A[∗, 2𝑘 : 2𝑘 + 1] store a sequence of Boolean values 𝜙 (𝑖) as
defined above. For any 𝑖 , let𝐶 (𝑖) be the number of positions 𝑗 ≤ 𝑖 such thatA[𝑗, 2𝑘 :
2𝑘 + 1] is true. Then there is a transformer block that computes, at each position 𝑖 ,
and in two other dimensions 2𝑘 ′, 2𝑘 ′ + 1, the values −𝐶 (𝑖)

𝑖+1 and 𝐶 (𝑖)
𝑖+1 .

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 88

Proof. We are given that

A(ℓ) [𝑖] =


...

−2𝜙 (𝑖) − 1
2𝜙 (𝑖) + 1

...


.

We want to simulate the counting term #[𝜙 (𝑖)], that is, to compute ±𝐶 (𝑖)
𝑖+1 in

some other dimensions 2𝑘 ′, 2𝑘 ′ +1. We construct a single transformer block. The
self-attention, at each position 𝑖 , uses uniform attention to compute the average
of all values up to and including position 𝑖 in dimension 2𝑘 : 2𝑘 + 1:

H(ℓ+1) [𝑖] =



...

−2𝜙 (𝑖) − 1
2𝜙 (𝑖) + 1

...

− 2
𝑖+1

∑
𝑖 𝜙 (𝑖) − 1

2
𝑖+1

∑
𝑖 𝜙 (𝑖) + 1
...


.

Note, however, that instead of the desired value 𝐶 (𝑖)
𝑖+1 , we have actually com-

puted 2𝐶 (𝑖)
𝑖+1 − 1, but it is straightforward to construct a FFNN that corrects this,

giving

A(ℓ+1) [𝑖] =



...

−2𝜙 (𝑖) − 1
2𝜙 (𝑖) + 1

...

− 1
𝑖+1

∑
𝑖 𝜙 (𝑖)

1
𝑖+1

∑
𝑖 𝜙 (𝑖)
...


.

□

Actually, remember that we are using layer normalization, so this vector
might actually be scaled by some factor. But this won’t affect the correctness
of the construction.

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 89

7.2.4 Linear constraints
Kt [#, +] can express any linear constraint on counts, that is, constraints of the
form ∑︁

𝑘∈𝐾
𝑎𝑘𝐶𝑘 (𝑖) ≥ 0 (7.42)

where the𝐶𝑘 are count terms, the 𝑎𝑘 are integer coefficients, and 𝐾 is a finite set
of indices. (The syntax of Kt [#, +] allows other forms of constraints, but they can
all be normalized into the above form.)

Lemma 7.14. Let A ∈ (R𝑑)∗ be a sequence of 𝑛 vectors in which, for each 𝑖 ∈ [𝑛]
and 𝑘 ∈ 𝐾 , A[𝑖, 2𝑘 : 2𝑘 + 1] stores a count 𝐶𝑘 (𝑖) (using the representation in
Eq. (7.41)). Let 𝑎𝑘 for 𝑘 ∈ 𝐾 be integer coefficients as in Eq. (7.42). Let dimen-
sions 2𝑘 ′, 2𝑘 ′ + 1 hold the value 0 across all positions. Then there is a stack of
transformer blocks that computes, at each position 𝑖 , and in two other dimensions
2𝑘 ′, 2𝑘 ′+1, whether the constraint Eq. (7.42) is true or false (using the representation
in Eq. (7.40)).

Proof. First, we will need the quantity 1
𝑖+1 , which we obtain by uniformly attend-

ing to all positions, with a value of 1 for BOS and 0 for all other symbols.
Second, we use a FFNN to compute, at each position 𝑖 , the linear combination

𝑆 (𝑖) =
∑
𝑘∈𝐾 𝑎𝑘𝐶𝑘 (𝑖)
𝑖 + 1 =

∑︁
𝑘∈𝐾

𝑎𝑘
𝐶𝑘 (𝑖)
𝑖 + 1 . (7.43)

To test whether this is nonnegative, we construct a feed-forward layer that com-
putes the function

gez(𝑠) = max
(
− 0.5
𝑖 + 1 ,min

(
0.5
𝑖 + 1 , 𝑠

))
(7.44)

= ReLU
(
𝑠 + 1

𝑖 + 1

)
− ReLU (𝑠) − 0.5

𝑖 + 1 (7.45)

− 2
𝑖+1 − 1

𝑖+1 0 1
𝑖+1

− 0.5
𝑖+1

0

0.5
𝑖+1

𝑠

ge
z(
𝑠)

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 90

(This is where 1
𝑖+1 gets used.)

Observe that gez(𝑆 (𝑖)) equals 0.5
𝑖+1 if

∑
𝑘 𝑎𝑘𝐶𝑘 (𝑖) ≥ 0, and − 0.5

𝑖+1 otherwise. This
is because the counts must be integers, so if

∑
𝑘 𝑎𝑘𝐶𝑘 (𝑖) < 0, then

∑
𝑘 𝑎𝑘𝐶𝑘 (𝑖) ≤

−1.
Both the linear combination and comparison with 0 can be packed into a

single FFNN, and this FFNN applies gez to every other dimension too:

𝑓

©­­­­­­­­­­­­­«



𝑣𝑖,0
−𝑣𝑖,0
...

0
0
...

𝑣𝑖,𝑑/2−1
−𝑣𝑖,𝑑/2−1



ª®®®®®®®®®®®®®¬
=



gez(𝑣𝑖,0)
− gez(𝑣𝑖,0)

...

gez
(∑

𝑘∈𝐾 𝑎𝑘
𝐶𝑘 (𝑖)
𝑖+1

)
− gez

(∑
𝑘∈𝐾 𝑎𝑘

𝐶𝑘 (𝑖)
𝑖+1

)
...

gez(𝑣𝑖,𝑑/2−1)
− gez(𝑣𝑖,𝑑/2−1)



.

This truncates all positive values to be 0.5
𝑖+1 at position 𝑖 , and all nonpositive

values to be − 0.5
𝑖+1 . As a result, the next application of layer normalization (with

appropriate parameter settings) scales every single value to ±1, back to Boolean
values. In particular, all previously-computed Boolean values are preserved, and
the newly-computed dimensions 2𝑘 ′, 2𝑘 ′+1 hold the correct Boolean value based
on the desired comparison.

As a side effect, all previously-computed counts also get changed to ±1. We
will organize the construction so that these values are not used in any further
computation. □

7.2.5 Main result
There may be several ways to perform the simulation of Kt [#, +] formulas, but it
is convenient to do this by induction over the depth of the formula.

Definition 7.15. Themodal depth of a formula 𝜙 or term𝐶 , which we notate as
md(𝜙), is the maximum level of nesting of # terms. That is,

md(𝑄𝜎) = 0 md(1) = 0
md(¬𝜙) = md(𝜙) md(#[𝜙]) = 1 +md(𝜙)
md(𝜙1 ∧ 𝜙2) = max(md(𝜙1),md(𝜙2)) md(𝐶1 +𝐶2) = max(md(𝐶1),md(𝐶2))
md(𝐶1 ≤ 𝐶2) = max(md(𝐶1),md(𝐶2))

Definition 7.16. Fix an alphabet Σ, and assume that the symbol BOS is not
in Σ. We say a masked transformer encoder 𝑇 (as a composition of blocks 𝑇 =

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 91

𝐵𝑏 ◦ · · · ◦ 𝐵1 ◦WE) with 𝑑 dimensions simulates a Kt [#, +] formula 𝜙 if for every
input w ∈ Σ∗ with length 𝑛 and every subformula𝜓𝑘 of 𝜙 ,

𝑇 (BOS ·w) [𝑖 + 1, 2𝑘 : 2𝑘 + 1] =



[
−1
+1

]
if w, 𝑖 ⊨ 𝜓𝑘[

+1
−1

]
otherwise.

A crucial step in our construction is being able to compose transformers in
parallel.

Lemma 7.17. If 𝑇1 and 𝑇2 are transformers of depth 𝐿1 and 𝐿2 which simulate 𝜙1
and 𝜙2, respectively, then there is a transformer 𝑇 of depth 𝐿 = max(𝐿1, 𝐿2) which
simulates both 𝜙1 and 𝜙2.

This is straightforward, and is very similar to Lemma 6.20.

Theorem 7.18. For every Kt [#, +] formula 𝜙 , there exists a masked transformer
encoder which simulates 𝜙 .

Proof. We induct on the modal depth of 𝜙 . If 𝜙 is of modal depth 0, it must be a
Boolean combination of 𝑄𝜎 formulas. This can be simulated in the WE as men-
tioned in Lemma 6.15.

For the inductive step, let 𝜙 be a Kt [#, +] formula of modal depth𝑚 + 1. By
Definition 7.15, 𝜙 is a Boolean combination of:

• Subformulas of modal depth at most𝑚.

• Subformulas of the form
∑
𝑘∈𝐾 𝑎𝑘#[𝜓𝑘] ≥ 0, where 𝐾 is a set of indices, 𝑎𝑘

are integers, and𝜓𝑘 are subformulas of modal depth𝑚.

By the inductive hypothesis, for each subformula 𝜓𝑘 of modal depth at most
𝑚, there is a transformer 𝑇𝑘 which simulates it. Parallel-compose all the 𝑇𝑘 by
Lemma 7.17 into a single transformer. Then we need to perform the following
operations in sequence:

1. Compute #[𝜓𝑘] for all relevant𝜓𝑘 , as described in Section 7.2.3.

2. Compute all formulas of the form
∑
𝑘∈𝐾 𝑎𝑘#[𝜓𝑘] ≥ 0, as described in Sec-

tion 7.2.4.

3. Compute all Boolean combinations of the above subformulas as necessary.

4. Ensure the BOS position is false.

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 7. Transformers with softmax attention 92

This can be achieved by adding one block. The first step can be achieved with
a self-attention layer. We’ve described how to compute each of the next three
steps individually using a feed-forward layer, but their composition can also be
performed with a single feed-forward layer. □

The previous chapter ended with a proof of the depth hierarchy for masked
hard attention transformers. This chapter does not! These upper and lower bounds
are suspected to not be tight enough, and the logics not well-understood enough,
to prove a depth hierarchy. To derive more precise characterizations of the ex-
pressivity of soft attention transformers, and reap the conceptual benefits of
these characterizations, poses an interesting challenge for future research.

Exercise 7.19. Let Kt [#, +,ODD] be the same as Kt [#, +], but extended with a
built-in predicate ODD such that w, 𝑖 |= ODD iff 𝑖 is an odd number.

(a) Write a formula of Kt [#, +,ODD] for the language (01)∗.

(b) Howwould you extend the construction of Theorem 7.18 to handle formu-
las of Kt [#, +,ODD]?

Exercise 7.20. Consider a variant of Kt [#, +] called Kt [%, +], which, instead of
counting terms #[𝜙1], has averaging terms %[𝜙1], which are interpreted as ratio-
nal numbers.

%[𝜙1]w,𝑖 =
|{ 𝑗 ≤ 𝑖 | w, 𝑗 |= 𝜙1}|

𝑖 + 1

(a) Explain why Kt [%, +] cannot define the language {a}.

(b) How would you modify the construction of Theorem 7.18 to handle for-
mulas of Kt [%, +]?

CSE 60963: Theory of Neural Networks Version of November 15, 2024

	Transformers with softmax attention
	Upper Bound
	Precision
	Arithmetic predicates
	Counting quantifiers
	Main result

	Lower Bound
	Kt[#,+]
	Boolean and count representations
	Counting
	Linear constraints
	Main result

