
Chapter 8

Transformers with
intermediate steps

In this section, we are going to look at one of the two earliest results on trans-
former expressivity (Pérez et al., 2021):

For any Turingmachine𝑀 , there is a transformer decoderwith average-
hard attention and intermediate steps that simulates𝑀 .

We start by defining some key terms.

8.1 Background

8.1.1 Average-hard attention
As is common, this proof simplifies attention by making it focus attention only
on the positions with the maximum score (s). If there is more than one maximal
position, attention is distributed evenly among them.

For any vector x ∈ R𝑑 , define 𝑀 (x) = {𝑖 ∈ [𝑛] | ∀𝑗 ∈ [𝑛], x[𝑗] ≤ x[𝑖]}
to be the set of indices of the maximal elements of x. In average-hard attention,
Eq. (5.8) is replaced with:

𝛼 [𝑖, 𝑗] = I[𝑗 ∈ 𝑀 (s[𝑖, :])]
|𝑀 (s[𝑖, :]) | . (8.1)

Average-hard attention was also called hard attention by Pérez et al. (2021) and
saturated attention by Merrill, Sabharwal, and Smith (2022), and has been argued
to be a realistic approximation to how trained transformers behave in practice
(Merrill, Ramanujan, et al., 2021).

93

Chapter 8. Transformers with intermediate steps 94

8.1.2 Transformer decoders
A transformer decoder is a transformer encoder tfr with future masking in its
attention, typically used to generate rather than recognize strings. GPT and its
competitor LLMs are all transformer decoders.

We assume that Σ contains a special symbol BOS that does not occur any-
where else; later, we will add several other special symbols. The input string is
the prefix of previously-generated symbols, y<𝑡 = 𝑦0 · · ·𝑦𝑡−1, where 𝑦0 = BOS.
The output is a probability distribution 𝑝 (𝑦𝑡 | y<𝑡) over the next symbol,

out : R𝑑 → R
x ↦→ Wx + b (8.2)

𝑝 (· | y<𝑡) = softmax(out (tfr (y<𝑡) [𝑡 − 1])) (8.3)

where parameters W ∈ R |Σ |×𝑑 and b ∈ R |Σ | .
To sample a string, we first sample 𝑦1 from 𝑝 (𝑦1 | BOS), then, for each time

step 𝑡 > 1, sample𝑦𝑡 from 𝑝 (𝑦𝑡 | y<𝑡). The process stops when𝑦𝑡 = EOS. Because
each sampled output symbol becomes part of the input at the next time step, this
kind of model is called autoregressive. See Fig. 8.1a.

In most (not all) theoretical papers about transformer decoders, we want the
decoder to output a single next symbol instead of a probability distribution over
next symbols. To do this, we can select the argmax of out (tfr (y<𝑡) [𝑡−1]) instead.
Warning: In general, selecting the argmax at each step does not give you the
highest-probability string.

We can also provide a prompt x to the decoder, which the decoder can see
as part of its input but doesn’t have to output. In that case, for 𝑡 ≥ 1, the input
string is x · y<𝑡 , and the output is 𝑦𝑡 . See Fig. 8.1b.

8.1.3 Intermediate steps
In many applications of transformer decoders, the prompt x is some kind of ques-
tion, and the desired output y is the answer. For example, x = 101*101 and
y = 10201. Researchers have found in practice that sometimes a transformer de-
coder isn’t very good at answering certain kinds of questions, but if one allows
the decoder to insert a number of intermediate time steps between the prompt
and the final output, it sometimes performs much better. This is known as a
scratchpad (Nye et al., 2022) or chain of thought (Wei et al., 2022). Here, we’re
only interested in the case where the final output is a single symbol, so we have
the following definition.
Definition 8.1. Let 𝑓 be a transformer decoder. For any string x ∈ Σ∗, we say
that 𝑓 , on prompt x, outputs 𝑦 after 𝑇 intermediate steps if there is a string y =

𝑦0 · · ·𝑦𝑇+1 with 𝑦0 = BOS, 𝑦𝑇+1 = 𝑦, such that for all 𝑡 ∈ 1, . . . ,𝑇 + 1, we have
𝑓 (x · y<𝑡) = e𝑦𝑡 .

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 8. Transformers with intermediate steps 95

decoder

BOS

𝑦1

𝑦1

𝑦2

𝑦2

𝑦3

· · ·

· · ·

𝑦𝑡−1

𝑦𝑡

(a) without prompt

decoder

𝑥0 𝑥1 · · · 𝑥𝑚−1 BOS

𝑦1

𝑦1

𝑦2

𝑦2

𝑦3

· · ·

· · ·

𝑦𝑡−1

𝑦𝑡

(b) with prompt

Figure 8.1: Generating strings from a transformer decoder.

8.2 Main result

Theorem 8.2. For any Turing machine𝑀 with input alphabet Σ, there is a trans-
former decoder 𝑓 with average-hard attention that is equivalent to𝑀 in the follow-
ing sense. For any string w ∈ Σ∗:

• If 𝑀 halts and accepts on input w, then there is a 𝑇 such that 𝑓 , on prompt
w, outputs ACC after 𝑇 intermediate steps.

• If𝑀 halts and rejects on inputw, then there is a𝑇 such that 𝑓 , on promptw,
outputs REJ after 𝑇 intermediate steps.

• If 𝑀 does not halt on input w, then there does not exist a 𝑇 such that 𝑓 , on
prompt w, outputs either ACC or REJ.

The rest of this chapter proves the above theorem. There are several related
proofs in the literature (Pérez et al., 2021; Bhattamishra et al., 2020; Merrill and
Sabharwal, 2024); ours is an amalgam of these.

The key idea in most of these proofs is that a transformer has no memory to
store the contents of the tape. All it has is the intermediate steps, which it uses
to record changes to the contents of the tape. Whenever it needs to read a cell of
the tape, it must use the record of changes to reconstruct the contents of the cell.

Let𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞start, 𝑞accept, 𝑞reject). The alphabet of 𝑓 .tfr is

Σ′ = Σ ∪ {BOS,ACC, REJ} ∪ (𝑄 × Γ × {−1, +1}) .

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 8. Transformers with intermediate steps 96

At each time step starting with BOS, the network outputs a triple (𝑟, 𝑏,𝑚) ∈
(𝑄 × Γ × {−1, +1}) indicating what the next simulated action of𝑀 is.

Each time step 𝑖 = 0, 1, . . . of the transformer proceeds as follows.

1. Unpack the current input symbol, 𝑥 (𝑖) :

• If 𝑥 (𝑖) ∈ Σ ∪ BOS, let 𝑞 (𝑖) = ⊥ and𝑚 (𝑖−1) = 0.
• Else, let (𝑞 (𝑖) , 𝑏 (𝑖−1) ,𝑚 (𝑖−1)) = 𝑥 (𝑖) .

2. Compute the head position: ℎ (𝑖) =
∑𝑖

𝑗=0𝑚
(𝑗−1) .

3. Compute the symbol under the head, 𝑎 (𝑖) :

• Find 𝑗∗, the rightmost position 𝑗 < 𝑖 such that ℎ (𝑗) = ℎ (𝑖) .
• If 𝑗∗ exists and 𝑏 (𝑗) ≠ ⊥, let 𝑎 (𝑖) = 𝑏 (𝑗∗) .
• Else, if 𝑥 (ℎ (𝑖)) ∈ Σ, let 𝑎 (𝑖) = 𝑥 (ℎ (𝑖)) .
• Else, let 𝑎 (𝑖) = ␣ .

4. Compute the next transition:

• If 𝑥 (𝑖) ∈ Σ, just output 𝑦 (𝑖) = 𝑥 (𝑖) . (It will be ignored anyway.)
• Else, if 𝑥 (𝑖) = BOS, let 𝑞 (𝑖+1) = 𝑞start, 𝑏 (𝑖) = 𝑎 (𝑖) , and𝑚 (𝑖) = 0.
• Else, let (𝑞 (𝑖+1) , 𝑏 (𝑖) ,𝑚 (𝑖)) = 𝛿 (𝑞 (𝑖) , 𝑎 (𝑖)).
• If 𝑞 (𝑖+1) = 𝑞accept or 𝑞reject, output 𝑦 (𝑖) = ACC or 𝑦 (𝑖) = REJ, respec-
tively.

• Else, output 𝑦 (𝑖) = (𝑞 (𝑖+1) , 𝑏 (𝑖) ,𝑚 (𝑖)).

For example, the run from Example 4.10 is simulated by:

𝑖 tape 𝑥 (𝑖) 𝑞 (𝑖) 𝑏 (𝑖−1) 𝑚 (𝑖−1) ℎ (𝑖) 𝑎 (𝑖) 𝑦 (𝑖)

0 1 ⊥ ⊥ 0 0 1 1
1 1 ⊥ ⊥ 0 0 1 1
2 BOS ⊥ ⊥ 0 0 1 (𝑞0, 1, 0)
3 1

ˆ
1␣ · · · (𝑞0, 1, 0) 𝑞0 1 0 0 1 (𝑞1, ␣ , +1)

4 ␣1
ˆ
␣ · · · (𝑞1, ␣ , +1) 𝑞1 ␣ +1 1 1 (𝑞2, x, +1)

5 ␣x␣
ˆ
· · · (𝑞2, x, +1) 𝑞2 x +1 2 ␣ (𝑞4, ␣ ,−1)

6 ␣x
ˆ
␣ · · · (𝑞4, ␣ ,−1) 𝑞4 ␣ −1 1 x (𝑞4, x,−1)

7 ␣
ˆ
x␣ · · · (𝑞4, x,−1) 𝑞4 x −1 0 ␣ (𝑞1, ␣ , +1)

8 ␣x
ˆ
␣ · · · (𝑞1, ␣ , +1) 𝑞1 ␣ +1 1 x ACC

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 8. Transformers with intermediate steps 97

Now we have to construct transformer layers to perform the above steps.
Each input vector contains a word embedding, e𝑥 (𝑖) , and a position embedding
with 4 components:

A(0) [𝑖] =

e𝑥 (𝑖)

1/(𝑖 + 1)
1
𝑖

𝑖2

. (8.4)

Step 1 is piecewise linear, so it can be computed by a FFNN (Theorem 3.7). Af-
terwards, the activation vector at position 𝑖 is:

A(1) [𝑖] =

e𝑥 (𝑖)

1/(𝑖 + 1)
1
𝑖

𝑖2

e𝑞 (𝑖)

e𝑏 (𝑖−1)

𝑚 (𝑖−1)

. (8.5)

Step 2 can be computed by a uniform self-attention layer:

Q[𝑖] = 0 K[𝑗] = 0 V[𝑗] =
[

0
𝑚 (𝑖−1)

]
. (8.6)

Uniform self-attention computes an average, not a sum. Since at time step 𝑖 , there
are 𝑖 + 1 positions to average over, the result is ℎ (𝑖)/(𝑖 + 1), not ℎ (𝑖) . We’ll correct
this in the next step.

A(2) [𝑖] =

e𝑥 (𝑖)

1/(𝑖 + 1)
1
𝑖

𝑖2

e𝑞 (𝑖)

e𝑏 (𝑖−1)

𝑚 (𝑖−1)

ℎ (𝑖)/(𝑖 + 1)

(8.7)

Step 3 is the most difficult step. There are several schemes that have been pro-
posed for this. All of them use average-hard attention, and all of them further
modify the transformer in some way: changing dot-product to something else

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 8. Transformers with intermediate steps 98

(Pérez et al., 2021), adding components to the position embedding (Pérez et al.,
2021; Barceló et al., 2024; Strobl et al., 2024), or applying layer normalization only
to selected components (Merrill and Sabharwal, 2024). The construction here is
closest to that of Strobl et al. (2024).

It uses two self-attention layers. The first layer changes ℎ (𝑖)/(𝑖 + 1) to ℎ (𝑖) by
treating the position embeddings as a lookup table (Barceló et al., 2024).

Q[𝑖] =
[
2ℎ (𝑖)/(𝑖 + 1)
−1/(𝑖 + 1)

]
K[𝑗] =

[
𝑗

𝑗2

]
V[𝑗] =

0
𝑗

𝑗2

e𝑥 (𝑗)

 (8.8)

Q[𝑖] · K[𝑗] = 1
𝑖 + 1 𝑗 (2ℎ

(𝑖) − 𝑗). (8.9)

Then the attention scores are uniquely maximized when 𝑗 = ℎ (𝑖) :

0 ℎ (𝑖) 2ℎ (𝑖)

0

(ℎ (𝑖))2/(𝑖 + 1)

𝑗

Q
[𝑖]

·K
[𝑗
]

So the attention layer outputs ℎ (𝑖) , and also some other quantities which we’ll
need shortly. The activation vector at position 𝑖 is:

A(3.5) [𝑖] =

e𝑥 (𝑖)

1/(𝑖 + 1)
1
𝑖

𝑖2

e𝑞 (𝑖)

e𝑏 (𝑖−1)

𝑚 (𝑖−1)

ℎ (𝑖)/(𝑖 + 1)
ℎ (𝑖)

(ℎ (𝑖))2
e
𝑥 (ℎ (𝑖))

. (8.10)

Recall that we need to search positions 𝑗 < 𝑖 such that ℎ (𝑗) = ℎ (𝑖) . But future-
masked attention looks at positions 𝑗 ≤ 𝑖 . To get around this, we search positions

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 8. Transformers with intermediate steps 99

𝑗 ≤ 𝑖 such that ℎ (𝑗−1) = ℎ (𝑖) . So we will need

ℎ (𝑖−1) = ℎ (𝑖) −𝑚 (𝑖−1) (8.11)
(ℎ (𝑖−1))2 = (ℎ (𝑖))2 − 2ℎ (𝑖)𝑚 (𝑖−1) + (𝑚 (𝑖−1))2 (8.12)

=

{
(ℎ (𝑖))2 + 2ℎ (𝑖) + 1 if𝑚 (𝑖−1) = −1
(ℎ (𝑖))2 − 2ℎ (𝑖) + 1 if𝑚 (𝑖−1) = +1

(8.13)

which can both be computed using a FFN. So

A(4) [𝑖] =

e𝑥 (𝑖)

1/(𝑖 + 1)
1
𝑖

𝑖2

e𝑞 (𝑖)

e𝑏 (𝑖−1)

𝑚 (𝑖−1)

ℎ (𝑖)/(𝑖 + 1)
ℎ (𝑖)

(ℎ (𝑖))2
e
𝑥 (ℎ (𝑖))

ℎ (𝑖−1)

(ℎ (𝑖−1))2

. (8.14)

The second self-attention layer uses another variation of the lookup trick:

Q[𝑖] =

2ℎ (𝑖)

−1
1

2(𝑖+1)

 K[𝑗] =

ℎ (𝑗−1)

(ℎ (𝑗−1))2
𝑗

 V[𝑗] =

0
ℎ (𝑗−1)

e𝑏 (𝑗−1)

 (8.15)

Q[𝑖] · K[𝑗] = ℎ (𝑗−1) (2ℎ (𝑖) − ℎ (𝑗−1))︸ ︷︷ ︸
find ℎ (𝑗−1) = ℎ (𝑖)

+ 𝑗

2(𝑖 + 1)︸ ︷︷ ︸
find rightmost

(8.16)

The first term is maximized when ℎ (𝑗−1) = ℎ (𝑖) , in which case it attains its
maximum of (ℎ (𝑖))2.

If there is more than one such position 𝑗 , then because of the second term,
𝑗∗ is the rightmost such 𝑗 . This second term has to be increasing in 𝑗 , but it also
has to be small enough that it cannot make the second-highest score as big as
the highest score. Since ℎ (𝑗−1) is an integer, the difference between the first- and
second-best values of the first term is 1:

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 8. Transformers with intermediate steps 100

0 ℎ (𝑖) − 1 ℎ (𝑖)

(ℎ (𝑖))2 − 1

(ℎ (𝑖))2

ℎ (𝑗−1)

fir
st
te
rm

So we make the second term 𝑗

2(𝑖+1) ≤ 1
2 < 1.

This gives

H(4) [𝑖] =

e𝑥 (𝑖)

1/(𝑖 + 1)
1
𝑖

𝑖2

e𝑞 (𝑖)

e𝑏 (𝑖−1)

𝑚 (𝑖−1)

ℎ (𝑖)/(𝑖 + 1)
ℎ (𝑖)

(ℎ (𝑖))2
e
𝑥 (ℎ (𝑖))

ℎ (𝑖−1)

(ℎ (𝑖−1))2
ℎ (𝑗∗−1)

e𝑏 (𝑗∗−1)

. (8.17)

Finally, we can use the FFNN to set

𝑎 (𝑖) =

{
𝑏 (𝑗∗−1) ℎ (𝑗∗−1) = ℎ (𝑖) and 𝑏 (𝑗∗−1) ≠ ⊥
𝑥 (ℎ (𝑖)) otherwise.

(8.18)

CSE 60963: Theory of Neural Networks Version of November 15, 2024

Chapter 8. Transformers with intermediate steps 101

So the activation vectors are:

A(5) [𝑖] =

e𝑥 (𝑖)

1/(𝑖 + 1)
1
𝑖

𝑖2

e𝑞 (𝑖)

e𝑏 (𝑖−1)

𝑚 (𝑖−1)

ℎ (𝑖)/(𝑖 + 1)
ℎ (𝑖)

(ℎ (𝑖))2
e
𝑥 (ℎ (𝑖))

ℎ (𝑖−1)

(ℎ (𝑖−1))2
ℎ (𝑗∗−1)

e𝑏 (𝑗∗−1)

e𝑎 (𝑖)

. (8.19)

Step 4 is piecewise linear, so it can be computed by a FFNN (Theorem 3.7).

Exercise 8.3. In Sipser’s definition of a TM, if the head is at position 0 andmoves
to the left, then it remains at position 0. What happens in the above simulation
of a TM? How would you fix it?

CSE 60963: Theory of Neural Networks Version of November 15, 2024

	Transformers with intermediate steps
	Background
	Average-hard attention
	Transformer decoders
	Intermediate steps

	Main result

