
Chapter 9

State-Space Models and
Linear Transformers

9.1 State-Space Models

9.1.1 Continuous form
A linear state space layer (Gu, Johnson, et al., 2021) takes as input a function
𝑥 : R → R and outputs another function 𝑦 : R → R, defined by the following
differential equations:

ℎ′ (𝑡) = Aℎ(𝑡) + B𝑥 (𝑡)
𝑦 (𝑡) = Cℎ(𝑡)

(9.1)

where ℎ : R → R𝑑 and ℎ′ is its derivative. The parameters of the model are:

A ∈ R𝑚×𝑚

B ∈ R𝑚×1

C ∈ R1×𝑚 .

Maybe the model is easier to think about in integral form:

ℎ(𝑡) =
∫ 𝑡

0
Aℎ(𝜏) + B𝑥 (𝜏) d𝜏

𝑦 (𝑡) = Cℎ(𝑡).

So B controls how ℎ depends on the past input, A controls how ℎ depends on its
own past, and C controls how the output depends on ℎ.

102

Chapter 9. State-Space Models and Linear Transformers 103

9.1.2 Recurrent form
Next, we want to discretize (9.1), which means that we choose a step size Δ > 0
and construct a network that takes as input a sequence 𝑥0 = 𝑥 (0), 𝑥1 = 𝑥 (Δ), 𝑥2 =

𝑥 (2Δ), . . . and outputs a sequence 𝑦0 ≈ 𝑦 (0), 𝑦1 ≈ 𝑦 (Δ), 𝑦2 ≈ 𝑦 (2Δ),
There are various ways of doing this. A very simple one is the forward Euler

method, which approximates 𝑥 andℎ with rectangles. Integrate the first equation
above from 𝑡 to 𝑡 + Δ:

ℎ(𝑡 + Δ) − ℎ(𝑡) =
∫ 𝑡+Δ

𝑡

Aℎ(𝑡) + B𝑥 (𝑡) d𝑡 (9.2)

≈ ΔAℎ(𝑡) + ΔB𝑥 (𝑡) (9.3)
ℎ(𝑡 + Δ) ≈ (I + ΔA)ℎ(𝑡) + ΔB𝑥 (𝑡) (9.4)

or equivalently

ℎ(𝑡 + Δ) ≈ Āℎ(𝑡) + B̄𝑥 (𝑡) (9.5)
Ā = I + ΔA (9.6)
B̄ = ΔB. (9.7)

Then we can write this as a mapping from a discrete sequence {𝑥𝑖 } to a sequence
{𝑦𝑖 }:

ℎ𝑖 = Āℎ𝑖−1 + B̄𝑥𝑖
𝑦𝑖 = Cℎ𝑖 .

(9.8)

The parameters of the model are still A, B, C, and now Δ as well.
Real implementations use more complicated methods, like the bilinear trans-

form a.k.a. Tustin’s method (Gu, Johnson, et al., 2021), which uses trapezoids, or
the zero-order hold (Gu and Dao, 2023), which approximates 𝑥 (but not ℎ) using
rectangles. These methods keep Eq. (9.5) but use different Ā and B̄.

Real implementations run 𝑑 of these in parallel to give a mapping on length-
𝑛 sequences of size-𝑑 vectors. But for our purposes we can continue to assume
𝑑 = 1.

9.1.3 Convolutional form
Since Eq. (9.8) are both linear, we can write each𝑦𝑖 as a (really big) linear function
of 𝑥0, . . . , 𝑥𝑖 by substituting away all the ℎ𝑖 ’s:

𝑦𝑖 =

𝑖∑︁
𝑗=0

CĀ𝑗 B̄𝑥𝑖− 𝑗 . (9.9)

CSE 60963: Theory of Neural Networks Version of November 9, 2024

Chapter 9. State-Space Models and Linear Transformers 104

If you are familiar with convolutional neural networks, you could think of this
as a (really big) convolution:

𝑘 𝑗 = CĀ𝑗 B̄ 𝑗 = 0, . . . , 𝑖 (9.10)
y = k̄ ∗ x. (9.11)

In some versions of SSMs, this enables efficient parallel implementations. It
also plays a key role in the theoretical results below.

9.1.4 Variations
The matrix A is often assumed to have a special structure, usually diagonal
(Gupta et al., 2022). These models are called S4 (structured state space sequence)
models.

In Mamba (Gu and Dao, 2023) – also known as S6, which stands for selec-
tive scan S4) – A is a learned diagonal matrix, but B, C, and Δ become input-
dependent:

B𝑖 = linB (𝑥𝑖)
C𝑖 = linC (𝑥𝑖)
Δ𝑖 = softplus(linΔ (𝑥𝑖))

= log(1 + exp(linΔ (𝑥𝑖))) .

where linB, linC, linΔ are linear layers with linB .𝑑 ′ = linC .𝑑 ′ =𝑚 and linΔ .𝑑 ′ = 1.

9.1.5 Expressivity
Theorem 9.1 (Merrill et al., 2024). The following SSMs, using 𝑂 (log𝑛) bits of
precision, are in DLOGTIME-uniform TC0:

1. Input-independent A, B, C, Δ.

2. Input-dependent diagonal A, and input-dependent B, C, Δ.

Merrill et al. (2024) only claimed L-uniformity, but their proof seems to work
for DLOGTIME-uniformity as well.

Proof. If A is input-independent, computing the convolutional form (Eq. (9.9))
just requires matrix multiplication, powering, and iterated addition. These are
all are inDLOGTIME-uniform TC0 on𝑂 (poly(𝑛))-bit integers (Hesse et al., 2002;
Allender et al., 2014), so we just have to show this on𝑂 (log𝑛)-bit floating-point
numbers as well. Elsewhere (Theorem 7.11) we have shown this for addition,
multiplication, and iterated addition, which gets us matrix multiplication and it-
erated addition. To compute Ā𝑘 , let 𝑒min be theminimumpossible exponent. Then

CSE 60963: Theory of Neural Networks Version of November 9, 2024

Chapter 9. State-Space Models and Linear Transformers 105

2−𝑒minĀ has integer entries with 𝑂 (poly(𝑛)) bits, so we can compute (2−𝑒minĀ)𝑘
in DLOGTIME-uniform TC0. Then we can multiply by 2−𝑒min𝑘 to get Ā𝑘 .

If A𝑖 is input-dependent but diagonal, then

𝑛∏
𝑖=1

A𝑖 =


∏𝑛

𝑖=1 A𝑖 [1, 1] 0 · · · 0
0

∏𝑛
𝑖=1 A𝑖 [2, 2] · · · 0

...
...

. . .
...

0 0 · · · ∏𝑛
𝑖=1 A𝑖 [𝑚,𝑚]


and iterated product is in DLOGTIME-uniform TC0 on 𝑂 (poly(𝑛))-bit integers
(Hesse et al., 2002). On 𝑂 (log𝑛)-bit floating-point numbers, we simply perform
an iterated product on their mantissas and iterated addition on their exponents.

□

9.2 Linear Transformers

9.2.1 Model
Recall that the output of an attention layer is

c𝑖 =
∑

𝑗 exp(q𝑖 · k𝑗)v𝑗∑
𝑗 exp(q𝑖 · k𝑗)

. (9.12)

At each time step 𝑖 , we have to recompute the sums over 𝑗 . Not only is this time
consuming, leading to𝑂 (𝑛2) time complexity, it also means that we have to store
k𝑗 and v𝑗 for all previous 𝑗 . (This is known as the KV cache).

Katharopoulos et al. (2020) proposed the following modification. Let 𝜙 be any
function 𝜙 : R𝑑 → R𝑑 ′ , called the feature map (a term that goes back to the days
of support vector machines and kernel methods). In a linear transformer, the
output is

c𝑖 =
∑

𝑗 (𝜙 (q𝑖) · 𝜙 (k𝑗))v𝑗∑
𝑗 𝜙 (q𝑖) · 𝜙 (k𝑗)

(9.13)

=
𝜙 (q𝑖) ·

∑
𝑗 𝜙 (k𝑗)v𝑗

𝜙 (q𝑖) ·
∑

𝑗 𝜙 (k𝑗)
. (9.14)

Now the sums over 𝑗 do not depend on 𝑖 . So they don’t need to be recomputed
for each 𝑖; instead, it can be computed incrementally. That is, in place of the KV

CSE 60963: Theory of Neural Networks Version of November 9, 2024

Chapter 9. State-Space Models and Linear Transformers 106

cache, we accumulate two partial sums:

a𝑖 = a𝑖−1 + 𝜙 (k𝑖)v𝑖 (9.15)
b𝑖 = b𝑖−1 + 𝜙 (k𝑖) (9.16)

c𝑖 =
𝜙 (q𝑖) · a𝑖
𝜙 (q𝑖) · b𝑖

. (9.17)

The feature map 𝜙 can be anything, but in particular, 𝜙 can be chosen so that
𝜙 (q𝑖) · 𝜙 (k𝑗) is a Taylor approximation of exp (Arora et al., 2024):

𝜙 (q𝑖) · 𝜙 (k𝑗) = 1 + q𝑖 · k𝑗 +
1
2
(q𝑖 · k𝑗)2 ≈ exp(q𝑖 · k𝑗) (9.18)

𝜙 (x) =



1
𝑥 [0]
...

𝑥 [𝑑 − 1]
1
2𝑥 [0]𝑥 [0]

...
1
2𝑥 [0]𝑥 [𝑑 − 1]

...
1
2𝑥 [𝑑 − 1]𝑥 [0]

...
1
2𝑥 [𝑑 − 1]𝑥 [𝑑 − 1]



(9.19)

The paper by Katharopoulos et al. (2020) was called “Transformers are RNNs”
because whereas the standard KV cache has size𝑂 (𝑛), the partial sums a𝑖 and b𝑖
have size𝑂 (1). Sowe can think of them as the state of a recurrent neural network.
Later, Dao and Gu (2024) published a paper called “Transformers are SSMs” argu-
ing that linear transformers are a special case of SSMs, since Eqs. (9.15) and (9.16)
are linear in the recurrent state. (The normalization in Eq. (9.17) seems not to fit
perfectly, though.)

9.2.2 In-context learning
Perhaps the most surprising finding about GPT-3 was its ability to do in-context
learning (Brown et al., 2020): when prompted with a few training examples (as
opposed to fine-tuning on them), languagemodels can learn from those examples
and make good predictions on new examples. In part, in-context learning turns
the question of trainability into a question of expressivity.

Remember back in Chapter 2 that in the perceptron algorithm, the weight
vector is just a weighted sum of the training examples. This is true for many

CSE 60963: Theory of Neural Networks Version of November 9, 2024

Chapter 9. State-Space Models and Linear Transformers 107

other linear models. For example, in linear regression, we have training examples

x0, . . . , x𝑛−1 ∈ R𝑑 inputs (9.20)
𝑦0, . . . , 𝑦𝑛−1 ∈ R outputs. (9.21)

We want to minimize the squared error,

L(w) =
𝑛−1∑︁
𝑖=0

1
2
(w · x𝑖 − 𝑦𝑖)2 . (9.22)

The gradient is

𝜕L
𝜕w

=

𝑛−1∑︁
𝑖=0

(w · x𝑖 − 𝑦𝑖)x𝑖 (9.23)

so the update rule is

w(ℓ+1) = w(ℓ) − 𝜂

𝑛−1∑︁
𝑖=0

(w(ℓ) · x𝑖 − 𝑦𝑖)x𝑖 . (9.24)

In in-context learning, the training examples become input symbols, and atten-
tion is a weighted sum of (encodings of) input symbols. So we can start to see
how transformers might be able to train on examples found in the input string.

(Von Oswald et al., 2023; Akyürek et al., 2024) analyze linear transformers
with 𝜙 (x) = x, doing in-context learning on linear regression. Construct a self-
attention layer as follows. Assume that the input to the ℓ-th self-attention layer
is, for 𝑖 ∈ [𝑛]:

h(ℓ)
𝑖

=


w(ℓ)

x𝑖
𝑦𝑖

 . (9.25)

From this, compute queries, keys, and values:

q𝑖 =
[
w(ℓ)

−1

]
(9.26)

k𝑗 =

[
x𝑗
𝑦 𝑗

]
(9.27)

v𝑗 =


−𝜂x𝑗
0
0

 . (9.28)

CSE 60963: Theory of Neural Networks Version of November 9, 2024

Chapter 9. State-Space Models and Linear Transformers 108

Then the self-attention’s output (after the residual connection) is

c(ℓ+1)
𝑖

= h(ℓ)
𝑖

+
𝑖∑︁
𝑗=0

(q𝑖 · k𝑗)v𝑗 (9.29)

=


w(ℓ) − 𝜂

∑𝑖
𝑗=0 (w(ℓ) · x𝑗 − 𝑦 𝑗)x𝑗

x𝑖
𝑦𝑖

 (9.30)

This is exactly equivalent to one step of gradient descent on the first 𝑖 examples.
The position-wise FFNN does nothing (h(ℓ+1) = c(ℓ+1)). If we repeat this layer 𝐿
times, it simulates 𝐿 steps of gradient descent.

CSE 60963: Theory of Neural Networks Version of November 9, 2024

Bibliography

Akyürek, Ekin, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou
(2024). What learning algorithm is in-context learning? Investigations with
linearmodels. In: Proceedings of the Eleventh International Conference on Learn-
ing Representations (ICLR).

Allender, Eric, Nikhil Balaji, and Samir Datta (2014). Low-depth uniform thresh-
old circuits and the bit-complexity of straight line programs. In:Mathematical
Foundations of Computer Science. Vol. 8635. Lecture Notes in Computer Sci-
ence. Springer, pp. 13–24.

Arora, Simran, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti,
James Zou, Atri Rudra, and Christopher Re (2024). Simple linear attention
language models balance the recall-throughput tradeoff. In: Proceedings of
the 41st International Conference on Machine Learning. Vol. 235. Proceedings
of Machine Learning Research, pp. 1763–1840.

Brown, Tom et al. (2020). Language models are few-shot learners. In: Advances
in Neural Information Processing Systems (NeurIPS), pp. 1877–1901.

Dao, Tri and Albert Gu (2024). Transformers are SSMs: generalized models and
efficient algorithms through structured state space duality. In: Proceedings of
the 41st International Conference on Machine Learning. Vol. 235. Proceedings
of Machine Learning Research, pp. 10041–10071.

Gu, Albert and Tri Dao (2023). Mamba: linear-time sequence modeling with se-
lective state spaces. eprint: arXiv:2312.00752.

Gu, Albert, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and
Christopher Ré (2021). Combining recurrent, convolutional, and continuous-
time models with linear state space layers. In: Proc. NeurIPS.

Gupta, Ankit, Albert Gu, and Jonathan Berant (2022). Diagonal state spaces are
as effective as structured state spaces. In: Advances in Neural Information Pro-
cessing Systems. Vol. 35, pp. 22982–22994.

Hesse, William, Eric Allender, and David A. Mix Barrington (2002). Uniform
constant-depth threshold circuits for division and iterated multiplication. In:
Journal of Computer and System Sciences 65.4, pp. 695–716.

109

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://proceedings.mlr.press/v235/arora24a.html
https://proceedings.mlr.press/v235/arora24a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.mlr.press/v235/dao24a.html
https://proceedings.mlr.press/v235/dao24a.html
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
arXiv:2312.00752
https://arxiv.org/abs/2110.13985
https://arxiv.org/abs/2110.13985
https://proceedings.neurips.cc/paper_files/paper/2022/file/9156b0f6dfa9bbd18c79cc459ef5d61c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9156b0f6dfa9bbd18c79cc459ef5d61c-Paper-Conference.pdf
http://dx.doi.org/https://doi.org/10.1016/S0022-0000(02)00025-9
http://dx.doi.org/https://doi.org/10.1016/S0022-0000(02)00025-9

Bibliography 110

Katharopoulos, Angelos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret
(2020). Transformers are RNNs: fast autoregressive transformers with lin-
ear attention. In: Proceedings of the 37th International Conference on Machine
Learning. Vol. 119. Proceedings ofMachine Learning Research, pp. 5156–5165.

Merrill,William, Jackson Petty, andAshish Sabharwal (2024). The illusion of state
in state-space models. In: Proc. ICML.

Von Oswald, Johannes, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento,
Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov (2023).
Transformers learn in-context by gradient descent. In: Proceedings of the 40th
International Conference on Machine Learning (ICML). Vol. 202. Proceedings
of Machine Learning Research, pp. 35151–35174.

CSE 60963: Theory of Neural Networks Version of November 9, 2024

https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://arxiv.org/abs/2404.08819
https://arxiv.org/abs/2404.08819
https://proceedings.mlr.press/v202/von-oswald23a.html

	State-Space Models and Linear Transformers
	State-Space Models
	Continuous form
	Recurrent form
	Convolutional form
	Variations
	Expressivity

	Linear Transformers
	Model
	In-context learning

