Circuit Complexity

Andy Yang

Previously

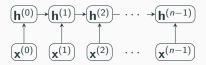


Figure 1: A simple RNN.

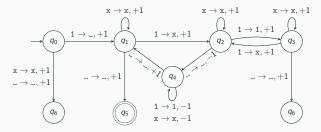


Figure 2: A Turing Machine for $\{1^{2^m} \mid m \ge 0\}$

RNNs are not easily parallelizable during training

Parallelism

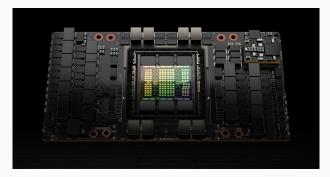
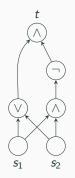


Figure 3: A GPU

Example

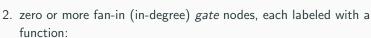
Here's a circuit with input length 2. It computes the XOR function. We draw the inputs at the bottom and the output at the top.



Circuits (Formally)

A (Boolean) circuit C with input length n is a directed acyclic graph with

1. *n* nodes s_0, \ldots, s_{n-1} with zero fan-in, designated as *input* nodes:





Si

3. A node *t*, which can be either an input or gate node, is designated the *output* of the circuit.

Given an input string $\mathbf{w} \in \{0,1\}^n$, each input node s_i is assigned the value w_i , and each gate node labeled f computes its value by applying f to the values of its in-neighbors. Thus, we can think of the circuit as computing a function $C \colon \{0,1\}^* \to \{0,1\}$, mapping each input string \mathbf{w} to the value of t.

- Depth: Longest path from input to output
- Size: Total number of nodes
- Fan-in: Number of wires entering each node

- In many applications, inputs are of bounded size
- We care about natural language processing, potentially unbounded lengths

Definition (Boolean circuit families)

A *circuit family* is a sequence $C = (C_n)_{n \in \mathbb{N}}$ such that for each n, C_n is a circuit with input length n. We treat C as a function on $\{0,1\}^*$ as follows.

For every $\mathbf{w} \in \{0,1\}^*$ with length n, $\mathcal{C}(\mathbf{w}) = C_n(\mathbf{w})$. Then the language defined by \mathcal{C} is $\mathcal{L}(\mathcal{C}) = \{\mathbf{w} \in \{0,1\}^* \mid \mathcal{C}(\mathbf{w}) = 1\}$. The *depth* and *size* of \mathcal{C} are the functions $n \mapsto \text{depth}(C_n)$ and $n \mapsto |C_n|$.

Definition (AC^k , TC^k , and NC^k **)**

We define the following classes of languages:

- AC^k is the class of languages that can be recognized by families of circuits with unbounded fan-in, O(poly(n)) size, and O((log n)^k) depth.
- TC^k is like AC^k, but also allows MAJORITY gates, which have unbounded fan-in and output 1 iff at least half of their inputs are 1.
- NC^k is the class of languages that can be recognized by families of circuits with fan-in at most 2, O(poly(n)) size, and O((log n)^k) depth.

Binary Addition in AC⁰

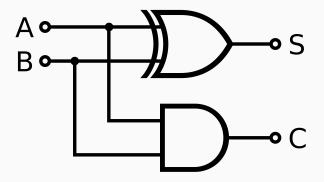


Figure 4: From Wikipedia

On the board

```
S \rightarrow F_1
F_1 \rightarrow (F_1 \wedge F_1)
    |(F_0 \vee F_1)|(F_1 \vee F_0)|(F_1 \vee F_1)
     |(\neg F_0)|
     | 1
F_0 \rightarrow (F_0 \wedge F_0) \mid (F_0 \wedge F_1) \mid (F_1 \wedge F_0)
    |(F_1 \vee F_1)|
    |(\neg F_1)
     0
```

Linguistically, the ability to evaluate Boolean formulas is directly relevant to computations underlying compositional semantics.

A circuit family contains a different circuit for each length n, with no constraint on the relationship between the circuits. This has some surprising consequences.

Example

Let *L* be any *unary* language, that is, $L \subseteq \{1\}^*$. For each $n \in \mathbb{N}$, if $1^n \in L$, let C_n be a circuit that always has value 1 (an AND gate with fan-in zero), and if $1^n \notin L$, let C_n be a circuit that has value 0 (an OR gate with fan-in zero). Then, *L* is recognized by a circuit family with O(n) size and O(1) depth, and is therefore in AC^0 , even if it is undecidable.

To prevent such consequences, we impose a *uniformity* restriction, which says that, given n, the circuit C_n must be constructible under some limitation on computational resources, in the following sense.

Definition (DLOGTIME uniformity, 1)

Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family, and assume that the nodes of C_n are numbered from 0 to $|C_n| - 1$. We say that C is DLOGTIME-*uniform* if there is a (deterministic) Turing machine that runs in logarithmic time and accepts those tuples $\langle f, i, j, 1^n \rangle$ such that in C_n , node *i* has label *f* and there is an edge from node *i* to node *j*.

Some Language Classes

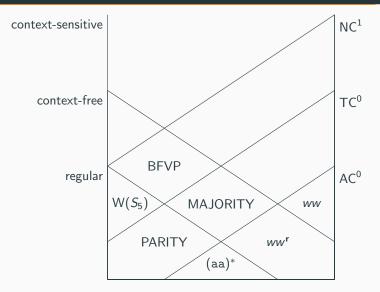


Figure 5: Some complexity classes defined by circuit families and logics, compared with the perhaps more familiar Chomsky hierarchy.

$\mathsf{AC}^0 \subsetneq \mathsf{TC}^0 \subseteq \mathsf{NC}^1$

References

 [1] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within NC¹. Journal of Computer and System Sciences, 41(3):274–306, 1990. doi: https://doi.org/10.1016/0022-0000(90)90022-D.