Transformers and Turing Machines

CSE 60963: Theory of Neural Networks

David Chiang (Univ. of Notre Dame, USA)
Jon Rawski (MIT /San Jose State Univ., USA)
Lena Strobl (Umea University, Sweden)

Andy Yang (Univ. of Notre Dame, USA)

2024-11-04

Main Result (too informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

Transformers are Turing-complete!!!1

Main Result (too informal)

tambourine_man on June 15, 2023 | parent | next [-]

Transformers are Turing complete, right?

nyrikki on June 15, 2023 | root | parent | next [-]
The paper from yesterday:

https://news.ycombinator.c...

Showed that attention with positional encodings and arbitrary precision rational
activation functions is Turing complete.

Using a finite precision, nonrational activation function and/or without positional
encodings is not Turning complete.

canjobear on June 15, 2023 | root | parent | prev | next [-]

No, they are actually very limited formally. For example you can't model a
language of nested brackets to arbitrary depth (as you can with an RNN). That
makes it all the more interesting that they are so successful.

https://news.ycombinator.com/item?id=36311871

https://news.ycombinator.com/item?id=36311871

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position
embeddings and intermediate steps can simulate a Turing machine.

Today’s Goals

e Define a transformer decoder as well as intermediate steps
and how they relate to chain of thought

e Explain in what sense a transformer is and isn't
Turing-complete

e Understand how a transformer, which has no memory, can
simulate a Turing machine's tape

Background

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An ' average-hard attention transformer decoder using position
embeddings and intermediate steps can simulate a Turing machine.

Average-Hard Attention

e Like unique-hard attention, attention goes only to
highest-scoring positions

e Unlike unique-hard attention, attention is divided equally
among highest-scoring positions

scores s 0 1 1

softmax 0.16 0.42 0.42
leftmost-hard 0 1 0
rightmost-hard 0 0 1
average-hard 0 05 05

Average-Hard Attention

Exercises:

scores s 2 2 0 2 1

average-hard

scores s 0O 0 0 0 O

average-hard

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention | transformer decoder using position
embeddings and intermediate steps can simulate a Turing machine.

Transformer Decoders

e At each time step, the decoder outputs a word
e |n practice: a probability distribution over words
e Often in theory: the exact embedding of a word
e The output word becomes the next input word
(autoregression)

1 Y2 y3 T Yt
decoder
17 1 |
BOS yvi y2 - v

Future Masking

e At each time step /, attention only attends to positions j < i
e Optional in encoders, mandatory in decoders

Exercise: Without autoregression, which vectors does vector x
depend on?

(How about with autoregression?)
10

e BOS can be preceded by input symbols, known as a prompt

Y1 Y2 Y3 Yt

T T 11T 17T 1

X X2 - xXm BOS oy oy o oyia

prompt

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position
embeddings and | intermediate steps can simulate a Turing
machine.

12

Intermediate Steps

e Allow intermediate output symbols between BOS and the final
output (here, just a single symbol)

intermediate steps answer

Y1 Y2 y3 T Yt

1T T 17T 1T 1

X1 x2 - xm BOS y1 oy 0 oyia

prompt

Theory Predicts Practice

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output
A: The answer is 27. x

Chain-of-Thought Prompting
Model Input \

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11, The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

J

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They

bought 6 more apples, so they have 3 +6 =9. The

\answer is9. Y,

[Wei et al., 2022]

14

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position
embeddings and intermediate steps can simulate a
Turing machine .

ii5)

Turing Machines

e Semi-infinite tape
e Cells are numbered starting from 0

e At each step, head moves either left (—1) or right (+1)

16

Turing Machines

Turing machine for {12" | m > 0}

X — X,+1 X = x,+1 X = Xx,+1

1—>u,+1A 1T—x,+1
q1 a2

17

Turing Machines

gs accept

18

Turing Machines

Question: What are the inputs and outputs of a Turing machine's
transition function?

5(q7 a) — (q/7 b? m)

19

Simulating Turing Machines

Main Result

Theorem (Pérez et al., 2019, Pérez et al., 2021)

For any Turing machine M with input alphabet ¥, there is an
average-hard attention transformer decoder f with position
embedding i+ (1/(i +1),1,i,i?) that is equivalent to M in the
following sense. For any string w € L*:

e [f M halts and accepts on input w, then there is a T such
that f, on prompt w, outputs ACC after T intermediate steps.

e [f M halts and rejects on input w, then there is a T such that
f, on prompt w, outputs REJ after T intermediate steps.

e [f M does not halt on input w, then there does not exist a T
such that f, on prompt w, outputs either ACC or REJ.

20

Key Idea 1

Use intermediate steps to simulate steps of Turing machine

steps of TM accept?
y©@ @ @ (T
decoder
T 1 T 1T 1T 1 T
X(O) X(l) 0oo X(n_l) BOS y(o) y(l) 000 y(T_l)
input string (previous) steps of TM

21

Key ldea 2

How can a transformer, which has no memory, simulate a Turing
machine's head?

22

Key ldea 2

How can a transformer, which has no memory, simulate a Turing
machine's head?

Answer: Sum all the previous moves

previous move mU—1 41 4+1 —1 -1 +1

current position h(") 1 2 1 0 1

22

Key Idea 3

How can a transformer, which has no memory, simulate a Turing
machine's tape?

23

Key Idea 3

How can a transformer, which has no memory, simulate a Turing

machine's tape?

Answer: Look at the most recent time the head was at current
position h()

e If none, the current symbol is the A{)-th input symbol
e If time j, the current symbol is what was written at time j

Input: 11.---

previous position K= 0 1 2 1 0

previous write b(i=1) e X o X
current position h(") 1 2 1 0
current symbol a(!) 1 o x . X

23

Position Embeddings

Position Embeddings

Adding a few simple elements to the position embeddings enables
a very useful set of tricks [Barceld et al., 2024]:

1/(i+1)
1

24

Forward Lookup

Assume that we have computed, for i € [n],

f(i) € [n]
g(ieR

Forward lookup: Compute g(f(i)) for i € [n]

i \012

3

2
g(i) 01 4 9 16

4

25

Forward Lookup

Assume that we have computed, for i € [n],

f(i) € [n]
g(ieR

Forward lookup: Compute g(f(i)) for i € [n]

query; = [f(ll)] key; = [_2JJ2] value; = [g(])}

Exercise: Compute scorej; = query; - key; and maximize with
respect to j.

25

Forward Lookup

Assume that we have computed, for i € [n],
F(7) € [n]
g(i) eR
Forward lookup: Compute g(f(i)) for i € [n]

query; = [f(ll)] key, = [_2j2] value; = [g(])}

scorej; = query; - key;
= —j% + 2f(i)j

argmaxscorej; = f(i).
J .
J

Scorej;

25

Backward Lookup

Assume that we have computed, for i € [n],

Backward lookup: compute g~1(f(i)) for i € [n]. That is, find j

such that g(j) = £ (/).

j 0012 3 4
£(i) 01 1 4 9
g(i) 01 4 9 16
g (i) |o 11 2 3

26

Backward Lookup

Assume that we have computed, for i € [n],
f(ieR
g(i) eR

Backward lookup: compute g~1(f(i)) for i € [n]. That is, find j
such that g(j) = f(i).

query; = [f(ll)] key; = ! 2g(J_.))2] value; = M

—g(j

scorejj = query; - key;

= —g(j)* + 2f(i)g(j)

argmaxscore;; = g~ (f(i)).
Jj

26

Backward Lookup

Assume that we have computed, for i € [n],
f(ieR
g(i) eR

Backward lookup: compute g~1(f(i)) for i € [n]. That is, find j
such that g(j) = f(i).

(i 2g(y
query; = [(1)] key; = [_58))2 value; = M

forward lookup
scorejj = query; - key;

= —g(j)* + 2f(i)g(j)

argmaxscore;; = g~ (f(i)).
J

26

Multiplication and Division

Assume that we have computed, for i € [n],

and we want to compute f(i)/g(i) € [n].

i 001 2 3 4
GO
g |1 3 3 7 3
glf() |1 1 1 3 2

27

Multiplication and Division

Assume that we have computed, for i € [n],
f(ieR
gli)eR

and we want to compute f(i)/g(i) € [n].
F(7) 2j :
query; = [g(/)] key; = [—j2] value; = M

scorej; = query; - key;
= —g(i)j* +2f(i)j

argmaxscore;; = f(i)/g(i).
J

Exercise: How would you compute (i) g()?

27

Simulating Turing Machines:
In More Detail

Detailed Overview

P e X0 g pi-D -1) 50 NG

0 1. 1 L1 0 0 1 1 it
1 1l 1 L1 0 0 1 1

2 110 BOS L L 0 0 1 (g1,1,0)

3 1o+ (q1,1,0) @ 1 0 0 1 (g2, -, +1)

4 1. (@2, +1) @ - +1 1 T (g3,%+1)

5 oo+ (g3,%,+1) g3 X +1 2 . (g5, 2, —1)

6 xoo (g5,-,—-1) g5 - -1 1 x (gs,x,—1)

7 ooxer (gs,x,—1) g5 x =il 0 o (g2, +1)

8 xor (go,o,+1) @2 . +1 1 X ACC

Transformer reads in input string, simulated TM does nothing

28

Detailed Overview

i tape x (1) gD b= mi-1) K0 2t y(®

0 .- 1 L1 0 0 1 1
1 1 L1 0 0 1 1

2 1..-- BOS 1L 0 0 1 (g1,1,0) " init
3 11+ (g1,1,0) @1 1 0 0 1 (g2,,41)

4 1 (2,0, 4+1) a2 - +1 1 1 (g3,%,+1)

5 xo-or (g3,x,+1) g3 X +1 2 . (g5, -, —1)

6 xo-r (g5,,—1) g5 - -1 1 x (gs,x,—1)

7 xe- (g5, x,—1) g5 x =1l 0 o (q2,0,+1)

8 xor (go,o,+1) @2 . +1 1 X ACC

Transformer outputs fake action, simulated TM enters start state

28

Detailed Overview

- X0 gl pi-D gmi-D) 50 NG

0 11 1 L1 0 0 1 1
1 1 L1 0 0 1 1

2 110 BOS L L 0 0 1 (g1,1,0)

8 1. (g1,1,0) a1 1 0 0 1 (g2,,+1)

4 1. (g2,-,4+1) @ - +1 1 1 (g3,%,+1)

5 o (g3,x,+1) @3 X +1 2 - (g5, -, —1) o
6 o (g5,-,—1) g5 - -1 1 X (g5,x,—1)

7 xe-o (g5, x,—1) g5 x 1 0 o (q,0,+1)

8 xo (92,-,+1) a2 = +1 1 X ACC

Transformer outputs the actions of the simulated TM one by one

28

Detailed Overview

T SO o) b0-D mG-D) S0 NG
0 1. 1 o1 0 0 1 1
1 1. 1 L1 0 0 1 1
2 11.--- | BOS L1 0 0 1 (q1,1,0)
3 11+ (q1,1,0) a1 1 0 0 1 (g2,-,41)
4 1. NECEEEESON o - +1 1 1T (g3,%+1)
5 x.--- JUGGESESEN g X +1 2 = (@ren=1)
6 -xo--r (gsyes—1) gs . -1 1 X (g5,x,—1)
7 xeoo- (gsy%—1) gs X -1 0 - (g2,-,41)
8 _x.--- NSNS . +1 1 x ACC

input

28

Detailed Overview

i tape <) EONEERED () S0
0 1. 1 L1 0 0 1
(TR 1 N 0 0 1
2 11.--- BOS b A 0 0 (q1,1,0)
3 1o (1,1,0) an 1 0 0 (92, -, +1)
4 1o (g2,0,+1) EEEEEES +1 1 (g3,%,+1)
5 xo--- (g3,x,+1) | g3 X +1 2 (g5,-,—1)
6 -xo--- (g5,-,—1) | g5 o =1 1 (gs,x,—1)
7 oxe-oo (gs,x,—1) [g5 X =l 0 (92, -, +1)
8 xo- - (g2,-,+1) | g2 . +1 1 ACC
step 1

Unpack previous action into state (g), write (b), and move (m)

28

Detailed Overview

.) g =D -1 RO 20 V0
0 1. 1 L 0 0 1 1
1 11e-- 1 L1 0 0 1 1
2 11.--- BOS L1 0 0 1 (q1,1,0)
3 1o (q1,1,0) ¢ 1 0 0 1 (92, -, +1)
4 o (g@2,0,+1) @ o +1 1 1T (g3,%+1)
5 xe-oo (g3, +1) g3 X +1 2 o (g5,-,—1)
6 xo-- (g5,-,—1) g5 . -1 1 X (gs,%,—1)
7 xe--- (gs,x,—1) g5 x =il 0 o (g2,-,41)
8 xo (g2, 1) @ - +1 1 X ACC
step 2

Compute head position (h) by summing previous moves

28

Detailed Overview

i e () FORNYCEVRCEIRNORE () ()
0 11 1 L1 0 0 1 1
111 1 o1 0 0 1 1
2 1. BOS 1 1 0 0 1 (q1,1,0)
3 1o (q1,1,0) ¢ 1 0 0 1 (92, -, +1)
4 o (g@2,0,+1) @ o +1 1 1 (g3,x+1)
5 Xoooo (g3, %,+1) g3 X +1 2 B (g5,-,—1)
6 xo-- (g5,-,—1) g5 . -1 1 X (gs,%,—1)
7 xe--- (gs,x,—1) g5 x =il 0 B (q2,-,+1)
8 xo (g2, 1) @ - +1 1 X ACC
step 3

Compute current tape symbol (a)

28

Detailed Overview

iope X g pliD =D g0)
0 1. 1 11 0 0 1
1 1. 1 L1 0 0 1
2 7 BOS 1 1 0 0 (gq1,1,0)
3 110 (@10 @ 1 0 0 (62,0 +1)
4 1o (g2, +1) @0 - +1 1 (g3, %, +1)
5 oo+ (g3,%,+1) g3 X +1 2 (g5, -, —1)
6 x.--- (g5,-,—1) g5 - =ll 1 (gs,x,—1)
7 xe (gsyx,—1) g5 X -1 0 (g2, 2, +1)
8 xo-r (q2,041) @ . +1 1 ACC
step 4

Output next action

28

Step 1: Unpack Input Symbol

...into current state, previously written symbol, and previous move.

phase‘ x (1) ‘q(i) pli—1) p(i-1)

wait €x L L 0
init BOS L 4 0
run (r,b,m) | r b

Use a FFN to compute the function

29

Step 2a: Compute Head Position

The current head position is just the sum of all previous moves:

A = 3 mD)
j=0

Using uniform self-attention, we can compute

l+1zm0 K

Question: How do we get rid of the - /(i 4+ 1)?

A0 (i +1) =

30

Step 3: Compute Tape Symbol

Find most recent j < i such that ht) = h() and return bU);

if none, return xh?.

31

Step 3: Compute Tape Symbol

Find most recent j < i such that hU) = () and return b(f);

. (i)
if none, return x™".

We can't do this because we only have non-strict masking (j < i).

31

Step 3: Compute Tape Symbol

7 h(i)

Find most recent j </ such that hU=1) = h() and return HU-D);

if none, return xh?.

This is a reverse table lookup of h() in j — AU=1). But finding the

most recent will require some extra care.

31

Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU—1); if

none, return xh?

Reverse table lookup with tie-breaking:

K(i) 2hG—1)
-2 i
query; = } key; = | —(h .) value; = pli=1)
2(i+1) J

Attention scores are:

score; j = —(RU=Y2 4 2p(DpU=1) 4 m

—
find rightmost

find hU—1) = p()

32

Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU—1); if

none, return x"".
Reverse table lookup with tie-breaking: — A — mU=D)
() (U-1)
h 2h('_1)) hi~1)
query; = } key; = | —(h J.) value; = Bl-1)
2(i+1) J

Attention scores are:
J
2(i+1)

—
find rightmost

score;j j = —(RU=Y2 4 2p(DpU-1) 4

find hU—1) = p())

32

Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU—1); if

none, return Xh(l) o

Reverse table lookup with tie-breaking: = h(f) — mU-1

h(’) 2h(1]_
query; = } key; = h(J 2| value; = b(f 1)

2(+1)
forward lookup

Attention scores are:
J
2(i+1)

~———
find rightmost

score;j j = —(RU=Y2 4 2p(DpU-1) 4

find hU—1) = A1)

32

Step 3b: Compute Tape Symbol

score;; = —(hU™1)2 4 2n(DpU-Y 1 2(I.J+)

find RU—1) = p() N~——
find rightmost

In first term, difference between best and second-best score is 1:

10 T T T
e —eplh =3
— h 3
E ///://'\o\
(] & — ~epli) —o
i ~ =2
2 e
[\\
N —
e =
0 1 2 3 4 5 6

hU-1)

So we make the second term 2(%1) < % < 1. 33

Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU~1); if

none, return X,
(i) (-1)
h 2h(j,1)) Bli=1)
query; = } key; = | —(h .) value; = pli=1)
2(i+1) J
Attention scores are;
i i) G- J

find AU—1) = R() SN——
find rightmost

FFN:
if (UTD = p() and BUY) £ | ~s () .= pU~1)

else ~» all) = x(h(i))

34

Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU~1); if

none, return X,
(i) (-1)
h 2h(j,1)) Bli=1)
query; = } key; = | —(h .) value; = pli=1)
2(i+1) J
Attention scores are;
i i) G- J

find AU—1) = R() SN——
find rightmost

FFN:
if (UTD = p() and BUY) £ | ~s () .= pU~1)
(h)

N\

forward lookup 34

else ~» al) = x

Step 4: Compute Transition

Given x() = current input symbol and al) = current tape symbol:

if x() € ¥~ output x()
if x{) = BOS ~» let (r, b, m) = (gstart, 3", 0)
else ~ let (r, b, m) = 6(q", al)

if r = Gaccept ~» output ACC

if r = Qreject ~ output REJ

else ~» output (r, b, m)

85

e Transformer decoders generate strings; they may be allowed
to generate intermediate steps (a.k.a. chain of thought).

e A transformer decoder can simulate a Turing machine by
generating the steps of the Turing machine as intermediate
steps. But not if the answer is required immediately.

e Even though it has no memory, a transformer can use
attention to reconstruct what it needs to know about the
Turing machine configuration.

36

References i

Pablo Barceld, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical languages accepted
by transformer encoders with hard attention. In Proceedings of the Twelfth International Conference on
Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=gbrHzq@7mq.

Jorge Pérez, Pablo Barcel6, and Javier Marinkovic. Attention is Turing-complete. Journal of Machine Learning
Research, 22:75:1-75:35, 2021. URL http://jmlr.org/papers/v22/20-302.html.

Jorge Pérez, Javier Marinkovi¢, and Pablo Barcelé. On the Turing completeness of modern neural network
architectures. In Proceedings of the Seventh International Conference on Learning Representations (ICLR),
2019. URL https://openreview.net/forum?id=HyGBdo@qFm.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural
Information Processing Systems 35 (NeurlPS), pages 24824-24837, 2022. URL https://proceedings.
neurips.cc/paper-files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

37

https://openreview.net/forum?id=gbrHZq07mq
http://jmlr.org/papers/v22/20-302.html
https://openreview.net/forum?id=HyGBdo0qFm
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

	Background
	Simulating Turing Machines
	Position Embeddings
	Simulating Turing Machines: In More Detail

