Transformers and Turing Machines

CSE 60963: Theory of Neural Networks

David Chiang (Univ. of Notre Dame, USA) Jon Rawski (MIT/San Jose State Univ., USA) Lena Strobl (Umeå University, Sweden) Andy Yang (Univ. of Notre Dame, USA) 2024-11-04

Main Result (too informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)
Transformers are Turing-complete!!!1

Main Result (too informal)

▲ tambourine_man on June 15, 2023 | parent | next [-]

Transformers are Turing complete, right?

 \blacktriangle nyrikki on June 15, 2023 | root | parent | next [–]

The paper from yesterday:

https://news.ycombinator.c...

Showed that attention with positional encodings and arbitrary precision rational activation functions is Turing complete.

Using a finite precision, nonrational activation function and/or without positional encodings is not Turning complete.

▲ canjobear on June 15, 2023 | root | parent | prev | next [-]

No, they are actually very limited formally. For example you can't model a language of nested brackets to arbitrary depth (as you can with an RNN). That makes it all the more interesting that they are so successful.

https://news.ycombinator.com/item?id=36311871

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position embeddings and intermediate steps can simulate a Turing machine.

Today's Goals

- **Define** a transformer *decoder* as well as *intermediate steps* and how they relate to *chain of thought*
- Explain in what sense a transformer is and isn't Turing-complete
- Understand how a transformer, which has no memory, can simulate a Turing machine's tape

Background

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position embeddings and intermediate steps can simulate a Turing machine.

Average-Hard Attention

- Like unique-hard attention, attention goes only to highest-scoring positions
- Unlike unique-hard attention, attention is divided equally among highest-scoring positions

scores s	0	1	1
softmax	0.16	0.42	0.42
leftmost-hard	0	1	0
rightmost-hard	0	0	1
average-hard	0	0.5	0.5

Average-Hard Attention

Exercises:

7

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position embeddings and intermediate steps can simulate a Turing machine.

Transformer Decoders

- At each time step, the decoder outputs a word
 - In practice: a probability distribution over words
 - Often in theory: the exact embedding of a word
- The output word becomes the next input word (autoregression)

Future Masking

- At each time step i, attention only attends to positions $j \leq i$
- Optional in encoders, mandatory in decoders

Exercise: Without autoregression, which vectors does vector x depend on?

(How about with autoregression?)

Prompting

• BOS can be preceded by input symbols, known as a prompt

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position embeddings and intermediate steps can simulate a Turing machine.

Intermediate Steps

 Allow intermediate output symbols between BOS and the final output (here, just a single symbol)

Theory Predicts Practice

Standard Prompting

Model Input

- Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
- A: The answer is 11.
- Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

- Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis halls does he have now?
- A: Roger started with 5 balls, 2 cans of 3 tennis balls each is 6 tennis balls, 5 + 6 = 11. The answer is 11.
- Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸

[Wei et al., 2022]

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position embeddings and intermediate steps can simulate a Turing machine.

- Semi-infinite tape
- Cells are numbered starting from 0
- ullet At each step, head moves either left (-1) or right (+1)

Turing machine for $\{1^{2^m} \mid m \geq 0\}$

Question: What are the inputs and outputs of a Turing machine's transition function?

$$\delta(q,a)=(q',b,m)$$

Simulating Turing Machines

Main Result

Theorem (Pérez et al., 2019, Pérez et al., 2021)

For any Turing machine M with input alphabet Σ , there is an average-hard attention transformer decoder f with position embedding $i \mapsto (1/(i+1),1,i,i^2)$ that is equivalent to M in the following sense. For any string $w \in \Sigma^*$:

- If M halts and accepts on input w, then there is a T such that f, on prompt w, outputs ACC after T intermediate steps.
- If M halts and rejects on input w, then there is a T such that f, on prompt w, outputs REJ after T intermediate steps.
- If M does not halt on input w, then there does not exist a T such that f, on prompt w, outputs either ACC or REJ.

Use intermediate steps to simulate steps of Turing machine

How can a transformer, which has no memory, simulate a Turing machine's head?

How can a transformer, which has no memory, simulate a Turing machine's head?

Answer: Sum all the previous moves

previous move $m^{(i-1)}$	+1	+1	-1	-1	+1
current position $h^{(i)}$	1	2	1	0	1

How can a transformer, which has no memory, simulate a Turing machine's tape?

How can a transformer, which has no memory, simulate a Turing machine's tape?

Answer: Look at the most recent time the head was at current position $\boldsymbol{h}^{(i)}$

- If none, the current symbol is the $h^{(i)}$ -th input symbol
- If time j, the current symbol is what was written at time j

Input: 11

previous position $h^{(i-1)}$	0	1	2	1	0
previous write $b^{(i-1)}$	J	Χ		Χ	u
current position $h^{(i)}$	1	2	1	0	1
current symbol $a^{(i)}$	1	_	Х	u	Х

Position Embeddings

Position Embeddings

Adding a few simple elements to the position embeddings enables a very useful set of tricks [Barceló et al., 2024]:

$$\mathsf{PE}(i) = \begin{bmatrix} 1/(i+1) \\ 1 \\ i \\ i^2 \end{bmatrix}.$$

Forward Lookup

Assume that we have computed, for $i \in [n]$,

$$f(i) \in [n]$$

 $g(i) \in \mathbb{R}$

Forward lookup: Compute g(f(i)) for $i \in [n]$

i	0	1	2	3	4
()	0	1	1	2	3 16
g(i)	0	1	4	9	16
g(f(i))	0	1	1	4	9

Forward Lookup

Assume that we have computed, for $i \in [n]$,

$$f(i) \in [n]$$

 $g(i) \in \mathbb{R}$

Forward lookup: Compute g(f(i)) for $i \in [n]$

$$query_i = \begin{bmatrix} f(i) \\ 1 \end{bmatrix} \qquad key_j = \begin{bmatrix} 2j \\ -j^2 \end{bmatrix} \qquad value_j = \begin{bmatrix} g(j) \end{bmatrix}$$

Exercise: Compute $score_{ij} = query_i \cdot key_j$ and maximize with respect to j.

Forward Lookup

Assume that we have computed, for $i \in [n]$,

$$f(i) \in [n]$$

 $g(i) \in \mathbb{R}$

Forward lookup: Compute g(f(i)) for $i \in [n]$

$$\mathsf{query}_i = \begin{bmatrix} f(i) \\ 1 \end{bmatrix} \qquad \mathsf{key}_j = \begin{bmatrix} 2j \\ -j^2 \end{bmatrix} \qquad \mathsf{value}_j = \begin{bmatrix} g(j) \end{bmatrix}$$

$$score_{ij} = query_i \cdot key_j$$

$$= -j^2 + 2f(i)j$$
 $argmax \, score_{ij} = f(i).$

Backward Lookup

Assume that we have computed, for $i \in [n]$,

$$f(i) \in \mathbb{R}$$
 $g(i) \in \mathbb{R}$

Backward lookup: compute $g^{-1}(f(i))$ for $i \in [n]$. That is, find j such that g(j) = f(i).

i	0	1	2	3	4
f(i)	0	1	1	4	9
g(i)	0	1	4	9	16
$g^{-1}(f(i))$	0	1	1	2	3

Backward Lookup

Assume that we have computed, for $i \in [n]$,

$$f(i) \in \mathbb{R}$$
 $g(i) \in \mathbb{R}$

Backward lookup: compute $g^{-1}(f(i))$ for $i \in [n]$. That is, find j such that g(j) = f(i).

$$query_i = \begin{bmatrix} f(i) \\ 1 \end{bmatrix} \qquad key_j = \begin{bmatrix} 2g(j) \\ -g(j)^2 \end{bmatrix} \qquad value_j = \begin{bmatrix} j \end{bmatrix}$$

$$ext{score}_{ij} = ext{query}_i \cdot ext{key}_j \ = -g(j)^2 + 2f(i)g(j)$$
 $ext{argmax score}_{ij} = g^{-1}(f(i)).$

Backward Lookup

Assume that we have computed, for $i \in [n]$,

$$f(i) \in \mathbb{R}$$
 $g(i) \in \mathbb{R}$

Backward lookup: compute $g^{-1}(f(i))$ for $i \in [n]$. That is, find j such that g(j) = f(i).

$$\begin{aligned} \mathsf{query}_i &= \begin{bmatrix} f(i) \\ 1 \end{bmatrix} & \mathsf{key}_j &= \begin{bmatrix} 2g(j) \\ -g(j)^2 \end{bmatrix} & \mathsf{value}_j &= \begin{bmatrix} j \end{bmatrix} \\ & \mathsf{forward\ lookup} \\ & \mathsf{score}_{ij} &= \mathsf{query}_i \cdot \mathsf{key}_j \\ &= -g(j)^2 + 2f(i)g(j) \\ & \mathsf{argmax} \, \mathsf{score}_{ij} &= g^{-1}(f(i)). \end{aligned}$$

Multiplication and Division

Assume that we have computed, for $i \in [n]$,

$$f(i) \in \mathbb{R}$$
 $g(i) \in \mathbb{R}$

and we want to compute $f(i)/g(i) \in [n]$.

i	0	1	2	3	4
f(i)	1	1/2	<u>1</u>	<u>3</u>	<u>2</u> 5
g(i)	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	<u>1</u> 5
g(f(i))	1	1	1	3	2

Multiplication and Division

Assume that we have computed, for $i \in [n]$,

$$f(i) \in \mathbb{R}$$
 $g(i) \in \mathbb{R}$

and we want to compute $f(i)/g(i) \in [n]$.

$$query_i = \begin{bmatrix} f(i) \\ g(i) \end{bmatrix} \qquad key_j = \begin{bmatrix} 2j \\ -j^2 \end{bmatrix} \qquad value_j = \begin{bmatrix} j \end{bmatrix}$$

$$ext{score}_{ij} = ext{query}_i \cdot ext{key}_j \ = -g(i)j^2 + 2f(i)j$$
 $ext{argmax score}_{ij} = f(i)/g(i).$

Exercise: How would you compute f(i) g(i)?

Simulating Turing Machines:

In More Detail

i	tape	$\chi^{(i)}$	$q^{(i)}$	$b^{(i-1)}$	$m^{(i-1)}$	$h^{(i)}$	$a^{(i)}$	<i>y</i> (<i>i</i>)	
0	<u>1</u> 1	1	Τ		0	0	1	1	wait
1	11	1	\perp	\perp	0	0	1	1	wait
2	<u>1</u> 1_···	BOS	\perp	\perp	0	0	1	$(q_1, 1, 0)$	
3	11	$(q_1, 1, 0)$	q_1	1	0	0	1	$(q_2, \square, +1)$	
4	_ <u>1</u> _····	$(q_2, \square, +1)$	q_2	J	+1	1	1	$(q_3,x,+1)$	
5	${}^{\neg}X^{\check{}}\cdots$	$(q_3,x,+1)$	q 3	Х	+1	2	u	$(q_5, \square, -1)$	
6	$\ \ \vec{x} \ \cdots$	$(q_5, \square, -1)$	q_5	u	-1	1	Х	$(q_5, x, -1)$	
7	~ X ~ · · ·	$(q_5, x, -1)$	q_5	Х	-1	0	u	$(q_2, \square, +1)$	
8	$\ \ \vec{x} \ \cdots$	$(q_2, \square, +1)$	q_2	J	+1	1	Х	ACC	

Transformer reads in input string, simulated TM does nothing

i	tape	$\chi^{(i)}$	$q^{(i)}$	$b^{(i-1)}$	$m^{(i-1)}$	$h^{(i)}$	$a^{(i)}$	<i>y</i> (<i>i</i>)	
0	11	1	Τ	\perp	0	0	1	1	
1	<u>1</u> 1	1	\perp	\perp	0	0	1	1	
2	11	BOS	Τ	Τ	0	0	1	$(q_1, 1, 0)$	init
3	11	$(q_1, 1, 0)$	q_1	1	0	0	1	$(q_2,, +1)$	
4	_j_···	$(q_2, \square, +1)$	q_2	J	+1	1	1	$(q_3,x,+1)$	
5	^ X ~ · · ·	$(q_3, x, +1)$	q_3	Х	+1	2	_	$(q_5, \square, -1)$	
6	$\ \ \vec{x}^{\scriptscriptstyle \neg} \cdots$	$(q_5, \square, -1)$	<i>q</i> ₅	u	-1	1	Х	$(q_5, x, -1)$	
7	${}^{}_{}X{}^{\neg}\cdots$	$(q_5, x, -1)$	<i>q</i> ₅	X	-1	0	_	$(q_2, \square, +1)$	
8	$\ \ \vec{x} \ \cdots$	$(q_2, \square, +1)$	q_2	J	+1	1	Х	ACC	

Transformer outputs fake action, simulated TM enters start state

i	tape	$\chi^{(i)}$	$q^{(i)}$	$b^{(i-1)}$	$m^{(i-1)}$	h ⁽ⁱ⁾	$a^{(i)}$	$y^{(i)}$	
0	11	1	Τ	\perp	0	0	1	1	
1	<u>1</u> 1	1	\perp	\perp	0	0	1	1	
2	11	BOS	\perp	\perp	0	0	1	$(q_1, 1, 0)$	
3	11	$(q_1, 1, 0)$	q_1	1	0	0	1	$(q_2,, +1)$	
4	_ <u>1</u> _ · · ·	$(q_2,, +1)$	q 2	u	+1	1	1	$(q_3, x, +1)$	
5	¬X ~ · · ·	$(q_3, x, +1)$	q 3	Х	+1	2	u	$(q_5, \llcorner, -1)$	run
6	~×~~~~	$(q_5, \square, -1)$	<i>q</i> ₅	u	-1	1	X	$(q_5, x, -1)$	
7	× X ~ · · ·	$(q_5,x,-1)$	q ₅	X	-1	0	u	$(q_2,, +1)$	
8	~×~	$(q_2, \square, +1)$	q 2	u	+1	1	Х	ACC	

Transformer outputs the actions of the simulated TM one by one

i	tape	$x^{(i)}$	$q^{(i)}$	$b^{(i-1)}$	$m^{(i-1)}$	$h^{(i)}$	$a^{(i)}$	<i>y</i> ⁽ⁱ⁾			
0	11	1	1	Τ	0	0	1	1			
1	11	1	Τ	\perp	0	0	1	1			
2	11	BOS	Τ	\perp	0	0	1	$(q_1, 1, 0)$			
3	<u>1</u> 1	$(q_1, 1, 0)$	q_1	1	0	0	1	$(q_2, \square, +1)$			
4	_1,	$(q_2,, +1)$	q_2	u	+1	1	1	$(q_3,x,+1)$			
5	${}^{\neg} X \ddot{} \cdots$	$(q_3, x, +1)$	q_3	X	+1	2		$(q_5, \llcorner, -1)$			
6	$\ \ \vec{x} \ \cdots$	$(q_5,, -1)$	q 5	J	-1	1	Х	$(q_5, x, -1)$			
7	~X~ · · ·	$(q_5, x, -1)$	q 5	Х	-1	0	_	$(q_2, \square, +1)$			
8	$\ \ \vec{x}^{\scriptscriptstyle \neg} \cdots$	$(q_2,, +1)$	q_2	u	+1	1	Х	ACC			
	input										

i	tape	$\chi^{(i)}$	$q^{(i)}$	$b^{(i-1)}$	$m^{(i-1)}$	$h^{(i)}$	$a^{(i)}$	<i>y</i> (<i>i</i>)		
0	<u>1</u> 1_···	1		Τ	0	0	1	1		
1	11	1	Τ	Τ	0	0	1	1		
2	11	BOS	Τ	\perp	0	0	1	$(q_1, 1, 0)$		
3	<u>1</u> 1	$(q_1, 1, 0)$	q_1	1	0	0	1	$(q_2, \square, +1)$		
4	_ <u>1</u> _····	$(q_2,, +1)$	q_2	u	+1	1	1	$(q_3, x, +1)$		
5	${}^{\neg}X^{\overset{\checkmark}{-}}\cdots$	$(q_3,x,+1)$	q_3	Х	+1	2	J	$(q_5, \square, -1)$		
6	$\ \ \vec{x}^{\scriptscriptstyle \neg} \cdots$	$(q_5, \square, -1)$	<i>q</i> ₅	u	-1	1	Х	$(q_5, x, -1)$		
7	$\check{}^{\chi} X^{\neg} \cdot \cdot \cdot$	$(q_5, x, -1)$	q 5	Х	-1	0	_	$(q_2, \square, +1)$		
8	$\ \ \vec{x} \ \cdots$	$(q_2, \square, +1)$	q_2	u	+1	1	Х	ACC		
	step 1									

Unpack previous action into state (q), write (b), and move (m)

i	tape	$\chi^{(i)}$	$q^{(i)}$	$b^{(i-1)}$	$m^{(i-1)}$	h ⁽ⁱ⁾	$a^{(i)}$	<i>y</i> (<i>i</i>)	
0	<u>1</u> 1_···	1	\perp	\perp	0	0	1	1	
1	11	1	\perp	\perp	0	0	1	1	
2	11	BOS	\perp	\perp	0	0	1	$(q_1, 1, 0)$	
3	<u>1</u> 1	$(q_1, 1, 0)$	q_1	1	0	0	1	$(q_2, \square, +1)$	
4	_ <u>1</u> _····	$(q_2, \square, +1)$	q_2	u	+1	1	1	$(q_3, x, +1)$	
5	${}^{\neg}X^{\overset{\checkmark}{\neg}}\cdots$	$(q_3,x,+1)$	q_3	Х	+1	2	J	$(q_5, \square, -1)$	
6	$\ \ \vec{x}^{\scriptscriptstyle \neg} \cdots$	$(q_5, \square, -1)$	q_5	J	-1	1	Х	$(q_5, x, -1)$	
7	~X~ · · ·	$(q_5, x, -1)$	<i>q</i> ₅	Х	-1	0	u	$(q_2, \square, +1)$	
8	$\ \ \vec{x} \ \cdots$	$(q_2, \square, +1)$	q_2	J	+1	1	Х	ACC	
	step 2								

Compute head position (h) by summing previous moves

i	tape	$\chi^{(i)}$	$q^{(i)}$	$b^{(i-1)}$	$m^{(i-1)}$	$h^{(i)}$	$a^{(i)}$	$y^{(i)}$
0	<u>1</u> 1_···	1			0	0	1	1
1	11	1	\perp	\perp	0	0	1	1
2	11	BOS	\perp	\perp	0	0	1	$(q_1, 1, 0)$
3	<u>1</u> 1	$(q_1, 1, 0)$	q_1	1	0	0	1	$(q_2, \square, +1)$
4	_1,	$(q_2, \square, +1)$	q_2	u	+1	1	1	$(q_3, x, +1)$
5	${}^{\neg}X^{\check{\neg}}\cdots$	$(q_3,x,+1)$	q_3	Х	+1	2	u	$(q_5, \llcorner, -1)$
6	$\ \ \vec{x}^{\scriptscriptstyle \neg} \cdots$	$(q_5, \square, -1)$	q_5	J	-1	1	Х	$(q_5, x, -1)$
7	$\check{}_X x_{} \cdots$	$(q_5, x, -1)$	<i>q</i> ₅	Х	-1	0	u	$(q_2, \llcorner, +1)$
8	$\ \ \vec{x} \ \cdots$	$(q_2, \square, +1)$	q_2	J	+1	1	Х	ACC
							step 3	

Compute current tape symbol (a)

i	tape	$\chi^{(i)}$	$q^{(i)}$	$b^{(i-1)}$	$m^{(i-1)}$	$h^{(i)}$	$a^{(i)}$	<i>y</i> ⁽ⁱ⁾	
0	11	1	\perp	\perp	0	0	1	1	
1	11	1	\perp	\perp	0	0	1	1	
2	11	BOS	\perp	\perp	0	0	1	$(q_1, 1, 0)$	
3	11	$(q_1, 1, 0)$	q_1	1	0	0	1	$(q_2,, +1)$	
4	_ <u>j</u>	$(q_2, \square, +1)$	q_2	J	+1	1	1	$(q_3, x, +1)$	
5	${}^{\neg}X^{\check{\neg}}\cdots$	$(q_3, x, +1)$	q_3	Х	+1	2	u	$(q_5,, -1)$	
6	$\ \ \vec{x} \ \cdots$	$(q_5, \square, -1)$	q_5	J	-1	1	Х	$(q_5, x, -1)$	
7	$\mathring{\ }_{X}{}^{\neg}\cdots$	$(q_5, x, -1)$	q_5	Х	-1	0	J	$(q_2,, +1)$	
8	$\ \ \vec{x}^{\scriptscriptstyle \neg} \cdots$	$(q_2, \square, +1)$	q_2	J	+1	1	Х	ACC	
								step 4	

Output next action

Step 1: Unpack Input Symbol

...into current state, previously written symbol, and previous move.

phase	$X^{(i)}$	$q^{(i)}$	$b^{(i-1)}$	$m^{(i-1)}$
wait	$\in \Sigma$	Т.	\perp	0
init	BOS	\perp	\perp	0
run	(r, b, m)	r	Ь	m

Use a FFN to compute the function

$$x^{(i)} \mapsto \begin{bmatrix} q^{(i)} \\ b^{(i-1)} \\ m^{(i-1)} \end{bmatrix}$$

Step 2a: Compute Head Position

The current head position is just the sum of all previous moves:

$$h^{(i)} = \sum_{j=0}^{i} m^{(j-1)}$$

Using uniform self-attention, we can compute

$$h^{(i)}/(i+1) = \frac{1}{i+1} \sum_{i=0}^{i} m^{(j-1)}$$

Question: How do we get rid of the $\cdot/(i+1)$?

Find most recent j < i such that $h^{(j)} = h^{(i)}$ and return $b^{(j)}$; if none, return $x^{h^{(i)}}$.

Find most recent j < i such that $h^{(j)} = h^{(i)}$ and return $b^{(j)}$; if none, return $x^{h^{(i)}}$.

We can't do this because we only have non-strict masking $(j \le i)$.

Find most recent j < i such that $h^{(j)} = h^{(i)}$ and return $b^{(j)}$; if none, return $x^{h^{(i)}}$.

Find most recent $j \le i$ such that $h^{(j-1)} = h^{(i)}$ and return $b^{(j-1)}$; if none, return $x^{h^{(i)}}$.

This is a reverse table lookup of $h^{(i)}$ in $j \mapsto h^{(j-1)}$. But finding the most recent will require some extra care.

Find most recent $j \le i$ such that $h^{(j-1)} = h^{(i)}$ and return $b^{(j-1)}$; if none, return $x^{h^{(i)}}$.

Reverse table lookup with tie-breaking:

$$\mathsf{query}_i = \begin{bmatrix} h^{(i)} \\ 1 \\ \frac{1}{2(i+1)} \end{bmatrix} \quad \mathsf{key}_j = \begin{bmatrix} 2h^{(j-1)} \\ -(h^{(j-1)})^2 \\ j \end{bmatrix} \quad \mathsf{value}_j = \begin{bmatrix} h^{(j-1)} \\ b^{(j-1)} \end{bmatrix}$$

Attention scores are:

$$score_{i,j} = \underbrace{-(h^{(j-1)})^2 + 2h^{(i)}h^{(j-1)}}_{find \ h^{(j-1)} = h^{(i)}} + \underbrace{\frac{j}{2(i+1)}}_{find \ rightmos}$$

Find most recent $j \le i$ such that $h^{(j-1)} = h^{(i)}$ and return $b^{(j-1)}$; if none, return $x^{h^{(i)}}$.

Reverse table lookup with tie-breaking:
$$= h^{(j)} - m^{(j-1)}$$

$$\text{query}_i = \begin{bmatrix} h^{(i)} \\ 1 \\ \frac{1}{2(i+1)} \end{bmatrix} \quad \text{key}_j = \begin{bmatrix} 2h^{(j-1)} \\ -(h^{(j-1)})^2 \\ j \end{bmatrix} \quad \text{value}_j = \begin{bmatrix} h^{(j-1)} \\ h^{(j-1)} \\ b^{(j-1)} \end{bmatrix}$$

Attention scores are:

$$score_{i,j} = \underbrace{-(h^{(j-1)})^2 + 2h^{(i)}h^{(j-1)}}_{find \ h^{(j-1)} = h^{(i)}} + \underbrace{\frac{j}{2(i+1)}}_{find \ rightmost}$$

Find most recent $j \le i$ such that $h^{(j-1)} = h^{(i)}$ and return $b^{(j-1)}$; if none, return $x^{h^{(i)}}$.

Reverse table lookup with tie-breaking:
$$= h^{(j)} - m^{(j-1)}$$

$$\text{query}_i = \begin{bmatrix} h^{(i)} \\ 1 \\ \frac{1}{2(i+1)} \end{bmatrix} \quad \text{key}_j = \begin{bmatrix} 2h^{(j-1)} \\ -(h^{(j-1)})^2 \\ j \end{bmatrix} \quad \text{value}_j = \begin{bmatrix} h^{(j-1)} \\ b^{(j-1)} \end{bmatrix}$$

$$\text{forward lookup}$$

Attention scores are:

$$score_{i,j} = \underbrace{-(h^{(j-1)})^2 + 2h^{(i)}h^{(j-1)}}_{find\ h^{(j-1)} = h^{(i)}} + \underbrace{\frac{j}{2(i+1)}}_{find\ rightmost}$$

score_{i,j} =
$$\underbrace{-(h^{(j-1)})^2 + 2h^{(i)}h^{(j-1)}}_{\text{find } h^{(j-1)} = h^{(i)}} + \underbrace{\underbrace{\frac{j}{2(i+1)}}_{\text{find rightmost}}}_{\text{find rightmost}}$$

In first term, difference between best and second-best score is 1:

So we make the second term $\frac{j}{2(i+1)} \le \frac{1}{2} < 1$.

Find most recent $j \le i$ such that $h^{(j-1)} = h^{(i)}$ and return $b^{(j-1)}$; if none, return $x^{h^{(j-1)}}$.

$$\mathsf{query}_i = \begin{bmatrix} h^{(i)} \\ 1 \\ \frac{1}{2(i+1)} \end{bmatrix} \quad \mathsf{key}_j = \begin{bmatrix} 2h^{(j-1)} \\ -(h^{(j-1)})^2 \\ j \end{bmatrix} \quad \mathsf{value}_j = \begin{bmatrix} h^{(j-1)} \\ b^{(j-1)} \end{bmatrix}$$

Attention scores are:

score_{i,j} =
$$\underbrace{-(h^{(j-1)})^2 + 2h^{(i)}h^{(j-1)}}_{\text{find } h^{(j-1)} = h^{(i)}} + \underbrace{\frac{j}{2(i+1)}}_{\text{find rightmost}}$$

FFN:

if
$$h^{(j-1)}=h^{(i)}$$
 and $b^{(j-1)}\neq \bot \leadsto a^{(i)}:=b^{(j-1)}$ else $\leadsto a^{(i)}:=x^{(h^{(i)})}$

Find most recent $i \le i$ such that $h^{(j-1)} = h^{(i)}$ and return $b^{(j-1)}$: if none, return $x^{h^{(j-1)}}$.

$$\mathsf{query}_i = \begin{bmatrix} h^{(i)} \\ 1 \\ \frac{1}{2(i+1)} \end{bmatrix} \quad \mathsf{key}_j = \begin{bmatrix} 2h^{(j-1)} \\ -(h^{(j-1)})^2 \\ j \end{bmatrix} \quad \mathsf{value}_j = \begin{bmatrix} h^{(j-1)} \\ b^{(j-1)} \end{bmatrix}$$

Attention scores are:

score_{i,j} =
$$\underbrace{-(h^{(j-1)})^2 + 2h^{(i)}h^{(j-1)}}_{\text{find } h^{(j-1)} = h^{(i)}} + \underbrace{\frac{j}{2(i+1)}}_{\text{find rightmost}}$$

FFN:

if
$$h^{(j-1)}=h^{(i)}$$
 and $b^{(j-1)}\neq \bot \leadsto a^{(i)}:=b^{(j-1)}$ else $\leadsto a^{(i)}:=x^{(h^{(i)})}$

Step 4: Compute Transition

Given $x^{(i)}=$ current input symbol and $a^{(i)}=$ current tape symbol: if $x^{(i)}\in\Sigma$ \leadsto output $x^{(i)}$ if $x^{(i)}=$ BOS \leadsto let $(r,b,m)=(q_{\text{start}},a^{(i)},0)$

$$\begin{array}{l} \text{if } r = q_{\mathsf{accept}} \leadsto \mathsf{output} \; \mathsf{ACC} \\ \\ \text{if } r = q_{\mathsf{reject}} \leadsto \mathsf{output} \; \mathsf{REJ} \\ \\ \\ \text{else} \leadsto \mathsf{output} \; (r,b,m) \end{array}$$

else \rightsquigarrow let $(r, b, m) = \delta(a^{(i)}, a^{(i)})$

Recap

- Transformer decoders generate strings; they may be allowed to generate *intermediate steps* (a.k.a. chain of thought).
- A transformer decoder can simulate a Turing machine by generating the steps of the Turing machine as intermediate steps. But not if the answer is required immediately.
- Even though it has no memory, a transformer can use attention to reconstruct what it needs to know about the Turing machine configuration.

References i

- Pablo Barceló, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical languages accepted by transformer encoders with hard attention. In *Proceedings of the Twelfth International Conference on Learning Representations (ICLR)*, 2024. URL https://openreview.net/forum?id=gbrHZq07mq.
- Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is Turing-complete. Journal of Machine Learning Research, 22:75:1–75:35, 2021. URL http://jmlr.org/papers/v22/20-302.html.
- Jorge Pérez, Javier Marinković, and Pablo Barceló. On the Turing completeness of modern neural network architectures. In Proceedings of the Seventh International Conference on Learning Representations (ICLR), 2019. URL https://openreview.net/forum?id=HvGBdo@aFm.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing Systems 35 (NeurIPS), pages 24824–24837, 2022. URL https://proceedings. neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.