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Main Result (too informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

Transformers are Turing-complete!!!1



Main Result (too informal)

tambourine_man on June 15, 2023 | parent | next [-]

Transformers are Turing complete, right?

nyrikki on June 15, 2023 | root | parent | next [-]
The paper from yesterday:

https://news.ycombinator.c...

Showed that attention with positional encodings and arbitrary precision rational
activation functions is Turing complete.

Using a finite precision, nonrational activation function and/or without positional
encodings is not Turning complete.

canjobear on June 15, 2023 | root | parent | prev | next [-]

No, they are actually very limited formally. For example you can't model a
language of nested brackets to arbitrary depth (as you can with an RNN). That
makes it all the more interesting that they are so successful.

https://news.ycombinator.com/item?id=36311871


https://news.ycombinator.com/item?id=36311871

Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position
embeddings and intermediate steps can simulate a Turing machine.



Today’s Goals

e Define a transformer decoder as well as intermediate steps
and how they relate to chain of thought

e Explain in what sense a transformer is and isn't
Turing-complete

e Understand how a transformer, which has no memory, can
simulate a Turing machine's tape



Background



Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An ' average-hard attention transformer decoder using position
embeddings and intermediate steps can simulate a Turing machine.



Average-Hard Attention

e Like unique-hard attention, attention goes only to
highest-scoring positions

e Unlike unique-hard attention, attention is divided equally
among highest-scoring positions

scores s 0 1 1

softmax 0.16 0.42 0.42
leftmost-hard 0 1 0
rightmost-hard 0 0 1
average-hard 0 05 05




Average-Hard Attention

Exercises:

scores s 2 2 0 2 1

average-hard

scores s 0O 0 0 0 O

average-hard




Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention | transformer decoder using position
embeddings and intermediate steps can simulate a Turing machine.



Transformer Decoders

e At each time step, the decoder outputs a word
e |n practice: a probability distribution over words
e Often in theory: the exact embedding of a word
e The output word becomes the next input word
(autoregression)

1 Y2 y3 T Yt
decoder
17 1 |
BOS yvi  y2 - v



Future Masking

e At each time step /, attention only attends to positions j < i
e Optional in encoders, mandatory in decoders

Exercise: Without autoregression, which vectors does vector x
depend on?

(How about with autoregression?)
10



e BOS can be preceded by input symbols, known as a prompt

Y1 Y2 Y3 Yt

T T 11T 17T 1

X X2 - xXm BOS oy oy o oyia

prompt



Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position
embeddings and | intermediate steps can simulate a Turing
machine.
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Intermediate Steps

e Allow intermediate output symbols between BOS and the final
output (here, just a single symbol)

intermediate steps  answer

Y1 Y2 y3 T Yt

1T T 17T 1T 1

X1 x2 - xm BOS y1 oy 0 oyia

prompt



Theory Predicts Practice

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output
A: The answer is 27. x

Chain-of-Thought Prompting
Model Input \

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11, The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

J

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They

bought 6 more apples, so they have 3 +6 =9. The

\answer is9. Y,

[Wei et al., 2022]
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Main Result (informal)

Theorem (Pérez et al., 2019, Pérez et al., 2021)

An average-hard attention transformer decoder using position
embeddings and intermediate steps can simulate a
Turing machine .

ii5)



Turing Machines

e Semi-infinite tape
e Cells are numbered starting from 0

e At each step, head moves either left (—1) or right (+1)

16



Turing Machines

Turing machine for {12" | m > 0}

X — X,+1 X = x,+1 X = Xx,+1

1—>u,+1A 1T—x,+1
q1 a2

17



Turing Machines

gs accept

18



Turing Machines

Question: What are the inputs and outputs of a Turing machine's
transition function?

5(q7 a) — (q/7 b? m)

19



Simulating Turing Machines




Main Result

Theorem (Pérez et al., 2019, Pérez et al., 2021)

For any Turing machine M with input alphabet ¥, there is an
average-hard attention transformer decoder f with position
embedding i+ (1/(i +1),1,i,i?) that is equivalent to M in the
following sense. For any string w € L*:

e [f M halts and accepts on input w, then there is a T such
that f, on prompt w, outputs ACC after T intermediate steps.

e [f M halts and rejects on input w, then there is a T such that
f, on prompt w, outputs REJ after T intermediate steps.

e [f M does not halt on input w, then there does not exist a T
such that f, on prompt w, outputs either ACC or REJ.

20



Key Idea 1

Use intermediate steps to simulate steps of Turing machine

steps of TM accept?
y©@ @ @ (T
decoder
T 1 T 1T 1T 1 T
X(O) X(l) 0oo X(n_l) BOS y(o) y(l) 000 y(T_l)
input string (previous) steps of TM

21



Key ldea 2

How can a transformer, which has no memory, simulate a Turing
machine's head?

22



Key ldea 2

How can a transformer, which has no memory, simulate a Turing
machine's head?

Answer: Sum all the previous moves

previous move mU—1 41 4+1 —1 -1 +1

current position h(") 1 2 1 0 1

22



Key Idea 3

How can a transformer, which has no memory, simulate a Turing
machine's tape?

23



Key Idea 3

How can a transformer, which has no memory, simulate a Turing

machine's tape?

Answer: Look at the most recent time the head was at current
position h()

e If none, the current symbol is the A{)-th input symbol
e If time j, the current symbol is what was written at time j

Input: 11.---

previous position K= 0 1 2 1 0

previous write b(i=1) e X o X
current position h(") 1 2 1 0
current symbol a(!) 1 o x . X

23



Position Embeddings




Position Embeddings

Adding a few simple elements to the position embeddings enables
a very useful set of tricks [Barceld et al., 2024]:

1/(i+1)
1
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Forward Lookup

Assume that we have computed, for i € [n],

f(i) € [n]
g(ieR

Forward lookup: Compute g(f(i)) for i € [n]

i \012

3

2
g(i) 01 4 9 16

4

25



Forward Lookup

Assume that we have computed, for i € [n],

f(i) € [n]
g(ieR

Forward lookup: Compute g(f(i)) for i € [n]

query; = [f(ll)] key; = [_2JJ2] value; = [g(])}

Exercise: Compute scorej; = query; - key; and maximize with
respect to j.
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Forward Lookup

Assume that we have computed, for i € [n],
F(7) € [n]
g(i) eR
Forward lookup: Compute g(f(i)) for i € [n]

query; = [f(ll)] key, = [_2j2] value; = [g(])}

scorej; = query; - key;
= —j% + 2f(i)j

argmaxscorej; = f(i).
J .
J

Scorej;
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Backward Lookup

Assume that we have computed, for i € [n],

Backward lookup: compute g~1(f(i)) for i € [n]. That is, find j

such that g(j) = £ (/).

j 0012 3 4
£(i) 01 1 4 9
g(i) 01 4 9 16
g (i) |o 11 2 3

26



Backward Lookup

Assume that we have computed, for i € [n],
f(ieR
g(i) eR

Backward lookup: compute g~1(f(i)) for i € [n]. That is, find j
such that g(j) = f(i).

query; = [f(ll)] key; = ! 2g(J_.))2] value; = M

—g(j

scorejj = query; - key;

= —g(j)* + 2f(i)g(j)

argmaxscore;; = g~ (f(i)).
Jj
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Backward Lookup

Assume that we have computed, for i € [n],
f(ieR
g(i) eR

Backward lookup: compute g~1(f(i)) for i € [n]. That is, find j
such that g(j) = f(i).

(i 2g(y
query; = [ (1)] key; = [_58))2 value; = M

forward lookup
scorejj = query; - key;

= —g(j)* + 2f(i)g(j)

argmaxscore;; = g~ (f(i)).
J

26



Multiplication and Division

Assume that we have computed, for i € [n],

and we want to compute f(i)/g(i) € [n].

i 001 2 3 4
GO
g |1 3 3 7 3
glf() |1 1 1 3 2

27



Multiplication and Division

Assume that we have computed, for i € [n],
f(ieR
gli)eR

and we want to compute f(i)/g(i) € [n].
F(7) 2j :
query; = [g(/)] key; = [—j2] value; = M

scorej; = query; - key;
= —g(i)j* +2f(i)j

argmaxscore;; = f(i)/g(i).
J

Exercise: How would you compute (i) g()?

27



Simulating Turing Machines:
In More Detail




Detailed Overview

P e X0 g pi-D -1 ) 50 NG

0 1. 1 L1 0 0 1 1 it
1 1l 1 L1 0 0 1 1

2 110 BOS L L 0 0 1 (g1,1,0)

3 1o+ (q1,1,0) @ 1 0 0 1 (g2, -, +1)

4 1. (@2, +1) @ - +1 1 T (g3,%+1)

5 oo+ (g3,%,+1) g3 X +1 2 . (g5, 2, —1)

6 xoo (g5,-,—-1) g5 - -1 1 x  (gs,x,—1)

7 ooxer (gs,x,—1) g5 x =il 0 o (g2, +1)

8 xor (go,o,+1) @2 . +1 1 X ACC

Transformer reads in input string, simulated TM does nothing

28



Detailed Overview

i tape x (1) gD b= mi-1) K0 2t y(®

0 .- 1 L1 0 0 1 1
1 1 L1 0 0 1 1

2 1..--  BOS 1L 0 0 1 (g1,1,0) " init
3 11+ (g1,1,0) @1 1 0 0 1 (g2,,41)

4 1 (2,0, 4+1) a2 - +1 1 1 (g3,%,+1)

5 xo-or (g3,x,+1) g3 X +1 2 . (g5, -, —1)

6 xo-r (g5,,—1) g5 - -1 1 x  (gs,x,—1)

7 xe- (g5, x,—1) g5 x =1l 0 o (q2,0,+1)

8 xor (go,o,+1) @2 . +1 1 X ACC

Transformer outputs fake action, simulated TM enters start state
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Detailed Overview

- X0 gl pi-D gmi-D ) 50 NG

0 11 1 L1 0 0 1 1
1 1 L1 0 0 1 1

2 110 BOS L L 0 0 1 (g1,1,0)

8 1. (g1,1,0) a1 1 0 0 1 (g2,,+1)

4 1. (g2,-,4+1) @ - +1 1 1 (g3,%,+1)

5 o (g3,x,+1) @3 X +1 2 - (g5, -, —1) o
6 o (g5,-,—1) g5 - -1 1 X (g5,x,—1)

7 xe-o (g5, x,—1) g5 x 1 0 o (q,0,+1)

8 xo (92,-,+1) a2 = +1 1 X ACC

Transformer outputs the actions of the simulated TM one by one
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Detailed Overview

T SO o) b0-D mG-D ) S0 NG
0 1. 1 o1 0 0 1 1
1 1. 1 L1 0 0 1 1
2 11.--- | BOS L1 0 0 1 (q1,1,0)
3 11+ (q1,1,0) a1 1 0 0 1 (g2,-,41)
4 1. NECEEEESON o - +1 1 1T (g3,%+1)
5 x.--- JUGGESESEN g X +1 2 = (@ren=1)
6 -xo--r  (gsyes—1) gs . -1 1 X (g5,x,—1)
7 xeoo- (gsy%—1) gs X -1 0 - (g2,-,41)
8 _x.--- NSNS . +1 1 x ACC

input

28



Detailed Overview

i tape <) EONEERED () S0
0 1. 1 L1 0 0 1
(TR 1 N 0 0 1
2 11.---  BOS b A 0 0 (q1,1,0)
3 1o (1,1,0) an 1 0 0 (92, -, +1)
4 1o (g2,0,+1) EEEEEES +1 1 (g3,%,+1)
5 xo--- (g3,x,+1) | g3 X +1 2 (g5,-,—1)
6 -xo--- (g5,-,—1) | g5 o =1 1 (gs,x,—1)
7 oxe-oo (gs,x,—1) [ g5 X =l 0 (92, -, +1)
8 xo- - (g2,-,+1) | g2 . +1 1 ACC
step 1

Unpack previous action into state (g), write (b), and move (m)

28



Detailed Overview

. ) g =D -1 RO 20 V0
0 1. 1 L 0 0 1 1
1 11e-- 1 L1 0 0 1 1
2 11.---  BOS L1 0 0 1 (q1,1,0)
3 1o (q1,1,0) ¢ 1 0 0 1 (92, -, +1)
4 o (g@2,0,+1) @ o +1 1 1T (g3,%+1)
5 xe-oo (g3, +1) g3 X +1 2 o (g5,-,—1)
6 xo-- (g5,-,—1) g5 . -1 1 X (gs,%,—1)
7 xe--- (gs,x,—1) g5 x =il 0 o (g2,-,41)
8 xo (g2, 1) @ - +1 1 X ACC
step 2

Compute head position (h) by summing previous moves

28



Detailed Overview

i e () FORNYCEVRCEIRNORE () ()
0 11 1 L1 0 0 1 1
111 1 o1 0 0 1 1
2 1. BOS 1 1 0 0 1 (q1,1,0)
3 1o (q1,1,0) ¢ 1 0 0 1 (92, -, +1)
4 o (g@2,0,+1) @ o +1 1 1 (g3,x+1)
5 Xoooo (g3, %,+1) g3 X +1 2 B (g5,-,—1)
6 xo-- (g5,-,—1) g5 . -1 1 X (gs,%,—1)
7 xe--- (gs,x,—1) g5 x =il 0 B (q2,-,+1)
8 xo (g2, 1) @ - +1 1 X ACC
step 3

Compute current tape symbol (a)

28



Detailed Overview

iope X g pliD =D g0 )
0 1. 1 11 0 0 1
1 1. 1 L1 0 0 1
2 7 BOS 1 1 0 0 (gq1,1,0)
3 110 (@10 @ 1 0 0 (62,0 +1)
4 1o (g2, +1) @0 - +1 1 (g3, %, +1)
5 oo+ (g3,%,+1) g3 X +1 2 (g5, -, —1)
6 x.--- (g5,-,—1) g5 - =ll 1 (gs,x,—1)
7 xe (gsyx,—1) g5 X -1 0 (g2, 2, +1)
8 xo-r (q2,041) @ . +1 1 ACC
step 4

Output next action

28



Step 1: Unpack Input Symbol

...into current state, previously written symbol, and previous move.

phase‘ x (1) ‘q(i) pli—1)  p(i-1)

wait €x L L 0
init BOS L 4 0
run (r,b,m) | r b

Use a FFN to compute the function

29



Step 2a: Compute Head Position

The current head position is just the sum of all previous moves:

A = 3 mD)
j=0

Using uniform self-attention, we can compute

l+1zm0 K

Question: How do we get rid of the - /(i 4+ 1)?

A0 (i +1) =

30



Step 3: Compute Tape Symbol

Find most recent j < i such that ht) = h() and return bU);

if none, return xh?.

31



Step 3: Compute Tape Symbol

Find most recent j < i such that hU) = () and return b(f);

. (i)
if none, return x™".

We can't do this because we only have non-strict masking (j < i).

31



Step 3: Compute Tape Symbol

7 h(i)

Find most recent j </ such that hU=1) = h() and return HU-D);

if none, return xh?.

This is a reverse table lookup of h() in j — AU=1). But finding the

most recent will require some extra care.

31



Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU—1); if

none, return xh?

Reverse table lookup with tie-breaking:

K(i) 2hG—1)
-2 i
query; = } key; = | —(h . ) value; = pli=1)
2(i+1) J

Attention scores are:

score; j = —(RU=Y2 4 2p(DpU=1) 4 m

—
find rightmost

find hU—1) = p()

32



Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU—1); if

none, return x"".
Reverse table lookup with tie-breaking:  — A — mU=D)
() (U-1)
h 2h('_1) ) hi~1)
query; = } key; = | —(h J. ) value; = Bl-1)
2(i+1) J

Attention scores are:
J
2(i+1)

—
find rightmost

score;j j = —(RU=Y2 4 2p(DpU-1) 4

find hU—1) = p())

32



Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU—1); if

none, return Xh(l) o

Reverse table lookup with tie-breaking: = h(f) — mU-1

h(’) 2h(1 ]_
query; = } key; = h(J 2| value; = b(f 1)

2(+1)
forward lookup

Attention scores are:
J
2(i+1)

~———
find rightmost

score;j j = —(RU=Y2 4 2p(DpU-1) 4

find hU—1) = A1)

32



Step 3b: Compute Tape Symbol

score;; = —(hU™1)2 4 2n(DpU-Y 1 2(I.J+ )

find RU—1) = p() N~——
find rightmost

In first term, difference between best and second-best score is 1:

10 T T T
e —eplh =3
— h 3
E ///://'\o\
(] & — ~epli) —o
i ~ =2
2 e
[ \\
N —
e =
0 1 2 3 4 5 6

hU-1)

So we make the second term 2(%1) < % < 1. 33



Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU~1); if

none, return X,
(i) (-1)
h 2h(j,1) ) Bli=1)
query; = } key; = | —(h . ) value; = pli=1)
2(i+1) J
Attention scores are;
i i) G- J

find AU—1) = R() SN——
find rightmost

FFN:
if (UTD = p() and BUY) £ | ~s () .= pU~1)

else ~» all) = x(h(i))

34



Step 3b: Compute Tape Symbol

Find most recent j < i such that hU~1) = h() and return pU~1); if

none, return X,
(i) (-1)
h 2h(j,1) ) Bli=1)
query; = } key; = | —(h . ) value; = pli=1)
2(i+1) J
Attention scores are;
i i) G- J

find AU—1) = R() SN——
find rightmost

FFN:
if (UTD = p() and BUY) £ | ~s () .= pU~1)
(h)

N\

forward lookup 34

else ~» al) = x



Step 4: Compute Transition

Given x() = current input symbol and al) = current tape symbol:

if x() € ¥~ output x()
if x{) = BOS ~» let (r, b, m) = (gstart, 3", 0)
else ~ let (r, b, m) = 6(q", al)

if r = Gaccept ~» output ACC

if r = Qreject ~ output REJ

else ~» output (r, b, m)

85



e Transformer decoders generate strings; they may be allowed
to generate intermediate steps (a.k.a. chain of thought).

e A transformer decoder can simulate a Turing machine by
generating the steps of the Turing machine as intermediate
steps. But not if the answer is required immediately.

e Even though it has no memory, a transformer can use
attention to reconstruct what it needs to know about the
Turing machine configuration.

36
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