
Turing Machines and RNNs

Andy Yang

LAST TIME: DFAs and Regular Languages

Things that DFAs can do:

• PARITY - e.g. keeping track if the door is opened or closed

• Dyck-1 of depth 2 - e.g. ensuring a room of occupancy 2 is empty

at the start and end of the day

• (aa)∗ - e.g. checking you can arrange your plants in two rows

• Σ∗aΣ∗$Σ∗aΣ∗ - e.g. listening to an entire speech and then

attempting to repeat it from memory but only getting one word right

1

THIS TIME: Beyond DFAs and Regular Languages

Things that DFAS cannot do. How would you perform these tasks?:

• {w | w ∈ Σ∗,#a ≥ #b} - e.g. keeping track of football game score

to see who won

• Unbounded Dyck-1 - e.g. ensuring a room (of infinite occupancy) is

empty at the start and end of the day

• an
2

- e.g. checking if you can arrange your plants in a square grid

• {w$w | w ∈ Σ∗} - e.g. listening to an entire speech and then

repeating the entire thing from memory

2

Alan Turing

Important paper: On computable numbers, with an application to the

Entscheidungsproblem (Turing 1936)

Figure 1: Alan Turing pondering the Entscheidungsproblem

3

Computers

Figure 2: a room full of computers

4

Turing Machines

Definition
A Turing machine is a tuple M = (Q,Σ, Γ, δ, qstart, qaccept, qreject), where

• Q is a finite set of states

• Σ is a finite input alphabet, where ̸∈ Σ

• Γ is a finite tape alphabet, where Σ ∪ { } ⊆ Γ

• δ : Q × Γ → Q × Γ× {−1,+1} is the transition function.

The tape has a left end and extends infinitely to the right. On input

w ∈ Σ∗, the tape is initialized to w · · · . If the current state is q, the

current tape symbol is a, and δ(q, a) = (r , b,m), then the machine enters

state r , writes a b, and moves left if m = −1, right if m = +1. If the

machine enters state qaccept, it halts and accepts w; if it enters state

qreject, it halts and rejects w.

5

Turing Machines

Here’s an example Turing machine [2], with qstart = q0, qaccept = q5
(marked with a double circle), qreject = q6. It decides the language

{12m | m ≥ 0}.

q0 q1 q2 q3

q4

q5q6 q6

1 → ,+1

x → x,+1

→ ,+1

x → x,+1

1 → x,+1

→ ,+1

x → x,+1

1 → 1,+1

→
,−
1

x → x,+1

1 → x,+1

→ ,+1

1 → 1,−1

x → x,−1

→
,+1

The reject state q6 appears twice to reduce clutter.

6

RNNs

x(0) x(1) x(2) x(n−1)· · ·

· · ·h(0) h(1) h(2) h(n−1)

Figure 3: A simple RNN yearning to become a Turing machine

7

Rational-Weight RNNs Simulate Turing Machines

Theorem (1)

For any Turing machine M with input alphabet Σ, there is a network

f = out ◦ rec, where rec is a simple RNN with rational weights and ReLU

activation functions, and out is a linear layer, that is equivalent to M in

the following sense: for any string w ∈ Σ∗,

• If M halts and accepts on input w, then there is a T such that for

all t ∈ [T], f (w · BOS ·NULt) = eNUL and

f (w · BOS ·NULT) = eACC.

• If M halts and rejects on input w, then there is a T such that for all

t ∈ [T], f (w ·BOS ·NULt) = eNUL and f (w ·BOS ·NULT) = eREJ.

• If M does not halt on input w, then for all t ≥ 0,

f (w · BOS ·NULt) = eNUL.

8

Integers vs Rationals

Last time, because SLU: R → [0, 1], when rounded to integer weights it

becomes Z → {0, 1}. So there are finitely many states h(i). This is not

the case if weights are rational.

9

Stack Encoding

10

Stack Encoding

11

Stack Encoding

12

Stack Encoding

13

Stack Encoding

14

Stack Encoding

Let Γ = {a1, a2, . . . , a|Γ|} be the alphabet of stack symbols. We encode a

stack as a vector of |Γ| rational numbers using the following mapping:

stack : Γ∗ → Q|Γ|

stack(ϵ) = 0 (1)

stack(aj · z) = 2
3ej +

1
3 stack(z). (2)

For each a ∈ Γ, this encoding puts a “margin” between stacks without an

a on top and stacks with an a on top, so that a SLU network can

distinguish them:

Then the basic stack operations can be implemented as follows:

push(z, aj) =
2
3ej +

1
3z (3)

top(z) = SLU(3z− 1) (4)

pop(z) = 3z− 2 top(z). (5)

15

References i

References

[1] Hava T. Siegelmann and Eduardo D. Sontag. On the computational

power of neural nets. Journal of Computer and System Sciences, 50

(1):132–150, 1995. doi: https://doi.org/10.1006/jcss.1995.1013.

[2] Michael Sipser. Introduction to the Theory of Computation. Cengage

Learning, 3rd edition, 2013.

16

	References

