Turing Machines and RNNs

Andy Yang

LAST TIME: DFAs and Regular Languages

Things that DFAs can do:

PARITY - e.g. keeping track if the door is opened or closed

Dyck-1 of depth 2 - e.g. ensuring a room of occupancy 2 is empty
at the start and end of the day

(aa)* - e.g. checking you can arrange your plants in two rows

Y*ay*$3*a¥* - e.g. listening to an entire speech and then
attempting to repeat it from memory but only getting one word right

THIS TIME: Beyond DFAs and Regular Languages

Things that DFAS cannot do. How would you perform these tasks?:
o {w|weX* #a>#b} - eg. keeping track of football game score
to see who won

e Unbounded Dyck-1 - e.g. ensuring a room (of infinite occupancy) is
empty at the start and end of the day

o a" - e.g. checking if you can arrange your plants in a square grid

o {whw | w € X*} - e.g. listening to an entire speech and then
repeating the entire thing from memory

Alan Turing

Important paper: On computable numbers, with an application to the
Entscheidungsproblem (Turing 1936)

Figure 1: Alan Turing pondering the Entscheidungsproblem

Figure 2: a room full of computers

Turing Machines

Definition
A Turing machine is a tuple M = (Q, X, T, 6, Gstarts Gaccept Greject), Where
e (Q is a finite set of states
e Y is a finite input alphabet, where . & ¥
e [is a finite tape alphabet, where U {_} C T
e 0: @xT — QxT x{-1,+1} is the transition function.

The tape has a left end and extends infinitely to the right. On input

w € X* the tape is initialized to w__ ---. If the current state is g, the
current tape symbol is a, and 6(q, a) = (r, b, m), then the machine enters
state r, writes a b, and moves left if m = —1, right if m = +1. If the
machine enters state Gaccept, it halts and accepts w; if it enters state
Greject, 1t halts and rejects w.

Here's an example Turing machine [2], with gstart = G0, Gaccept = G5
(marked with a double circle), greject = g6. It decides the language
{12m | m>0}.

The reject state gg appears twice to reduce clutter.

Figure 3: A simple RNN yearning to become a Turing machine

Rational-Weight RNNs Simulate Turing Machines

Theorem (1)

For any Turing machine M with input alphabet ¥, there is a network

f = out o rec, where rec is a simple RNN with rational weights and ReLU
activation functions, and out is a linear layer, that is equivalent to M in
the following sense: for any string w € ¥*,

e [f M halts and accepts on input w, then there is a T such that for
all t € [T], f(w-BOS - NUL") = exur, and
f(w-BOS-NUL"T) = escc.
e I/f M halts and rejects on input w, then there is a T such that for all
t € [T], f(w-BOS-NUL!) = exur, and f(w-BOS-NUL") = egg;.
e [f M does not halt on input w, then for all t > 0,
f(W -BOS - NULt) = eNUL-

Integers vs Rationals

Last time, because SLU: R — [0, 1], when rounded to integer weights it
becomes Z — {0,1}. So there are finitely many states h(). This is not
the case if weights are rational.

Stack Encoding

Stack Encoding

Stack Encoding

Stack Encoding

Stack Encoding

Stack Encoding

Let I = {a1,a0,...,ayr|} be the alphabet of stack symbols. We encode a
stack as a vector of |I'| rational numbers using the following mapping:
stack: ™ — Q!
stack(e) =0 (1)
stack(a; - z) = 2e; + 3stack(z). (2)
For each a € T, this encoding puts a “margin” between stacks without an

a on top and stacks with an a on top, so that a SLU network can
distinguish them:

Then the basic stack operations can be implemented as follows:

push(z,a;) = 3e; + 3z (3)
top(z) = SLU(3z — 1) (4)
pop(z) = 3z — 2top(z). (5)

15

References i

References

[1] Hava T. Siegelmann and Eduardo D. Sontag. On the computational
power of neural nets. Journal of Computer and System Sciences, 50
(1):132-150, 1995. doi: https://doi.org/10.1006/jcss.1995.1013.

[2] Michael Sipser. Introduction to the Theory of Computation. Cengage
Learning, 3rd edition, 2013.

16

	References

