Turing Machines and RNNs

Andy Yang

Things that DFAs can do:

- PARITY e.g. keeping track if the door is opened or closed
- Dyck-1 of depth 2 e.g. ensuring a room of occupancy 2 is empty at the start and end of the day
- $(aa)^*$ e.g. checking you can arrange your plants in two rows
- Σ*aΣ*\$Σ*aΣ* e.g. listening to an entire speech and then attempting to repeat it from memory but only getting one word right

Things that DFAS cannot do. How would you perform these tasks?:

- {w | w ∈ Σ*, #a ≥ #b} e.g. keeping track of football game score to see who won
- Unbounded Dyck-1 e.g. ensuring a room (of infinite occupancy) is empty at the start and end of the day
- a^{n^2} e.g. checking if you can arrange your plants in a square grid
- $\{w\$w \mid w \in \Sigma^*\}$ e.g. listening to an entire speech and then repeating the entire thing from memory

Alan Turing

Important paper: On computable numbers, with an application to the Entscheidungsproblem (Turing 1936)

Figure 1: Alan Turing pondering the Entscheidungsproblem

Computers

Figure 2: a room full of computers

Definition

A Turing machine is a tuple $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$, where

- Q is a finite set of states
- Σ is a finite input alphabet, where $_ \not \in \Sigma$
- Γ is a finite tape alphabet, where $\Sigma \cup \{\llcorner\} \subseteq \Gamma$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{-1, +1\}$ is the transition function.

The tape has a left end and extends infinitely to the right. On input $\mathbf{w} \in \Sigma^*$, the tape is initialized to $\mathbf{w}_{\neg \neg} \cdots$. If the current state is q, the current tape symbol is a, and $\delta(q, a) = (r, b, m)$, then the machine enters state r, writes a b, and moves left if m = -1, right if m = +1. If the machine enters state q_{accept} , it halts and accepts \mathbf{w} ; if it enters state q_{reject} , it halts and rejects \mathbf{w} .

Turing Machines

Here's an example Turing machine [2], with $q_{\text{start}} = q_0$, $q_{\text{accept}} = q_5$ (marked with a double circle), $q_{\text{reject}} = q_6$. It decides the language $\{1^{2^m} \mid m \ge 0\}$.

The reject state q_6 appears twice to reduce clutter.

Figure 3: A simple RNN yearning to become a Turing machine

Theorem (1)

For any Turing machine M with input alphabet Σ , there is a network $f = out \circ rec$, where rec is a simple RNN with rational weights and ReLU activation functions, and out is a linear layer, that is equivalent to M in the following sense: for any string $\mathbf{w} \in \Sigma^*$,

- If *M* halts and accepts on input \mathbf{w} , then there is a *T* such that for all $t \in [T]$, $f(\mathbf{w} \cdot BOS \cdot NUL^t) = \mathbf{e}_{NUL}$ and $f(\mathbf{w} \cdot BOS \cdot NUL^T) = \mathbf{e}_{ACC}$.
- If M halts and rejects on input w, then there is a T such that for all $t \in [T]$, $f(\mathbf{w} \cdot BOS \cdot NUL^t) = \mathbf{e}_{NUL}$ and $f(\mathbf{w} \cdot BOS \cdot NUL^T) = \mathbf{e}_{REJ}$.
- If M does not halt on input w, then for all $t \ge 0$, $f(\mathbf{w} \cdot BOS \cdot NUL^t) = \mathbf{e}_{NUL}$.

Last time, because SLU: $\mathbb{R} \to [0, 1]$, when rounded to integer weights it becomes $\mathbb{Z} \to \{0, 1\}$. So there are finitely many states $\mathbf{h}^{(i)}$. This is not the case if weights are rational.

Stack Encoding

Stack Encoding

Let $\Gamma = \{a_1, a_2, \dots, a_{|\Gamma|}\}$ be the alphabet of stack symbols. We encode a stack as a vector of $|\Gamma|$ rational numbers using the following mapping:

stack:
$$\Gamma^* \to \mathbb{Q}^{|\Gamma|}$$

stack $(\epsilon) = \mathbf{0}$ (1)
stack $(a_j \cdot \mathbf{z}) = \frac{2}{3}\mathbf{e}_j + \frac{1}{3}$ stack (\mathbf{z}) . (2)

For each $a \in \Gamma$, this encoding puts a "margin" between stacks without an a on top and stacks with an a on top, so that a SLU network can distinguish them:

Then the basic stack operations can be implemented as follows:

$$push(\mathbf{z}, a_j) = \frac{2}{3}\mathbf{e}_j + \frac{1}{3}\mathbf{z}$$
(3)

$$top(\mathbf{z}) = SLU(3\mathbf{z} - 1) \tag{4}$$

 $pop(\mathbf{z}) = 3\mathbf{z} - 2 \operatorname{top}(\mathbf{z}). \tag{5}$

References

- Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets. *Journal of Computer and System Sciences*, 50 (1):132–150, 1995. doi: https://doi.org/10.1006/jcss.1995.1013.
- [2] Michael Sipser. *Introduction to the Theory of Computation*. Cengage Learning, 3rd edition, 2013.