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Abstract
A swarm intelligent system is robust, scalable, adaptable, and
can efficiently solve complex problems, all through simple
behavior. Inspired by biology, swarm intelligent systems, or
swarms, utilize emergence, where simple local behaviors dis-
tributed across many agents lead to global phenomena, yield-
ing a whole greater than the sum of parts. But the absence
of models that quantify emergence, or the lack of an emer-
gent calculus, has challenged swarm engineering. How sim-
ple behaviors and interactions lead to complex phenomena is
not well understood, let alone developing such behaviors for
problem solving.

A swarm intelligent solution is presented to a computa-
tionally challenging problem with quantifiable results in sup-
port of future models of emergence. The swarm intelligent
Decentralized K-Means Clustering technique is introduced
within the context of rechargeable Mobile Ad hoc Networks
(MANETs). Through engineered emergent behavior, cluster
centroids relocate to minimize the sum of the squared error
between sensors and the nearest centroid, similar to K-means
clustering. An agent-based simulation is developed to evalu-
ate the technique, demonstrating the sum of squared error is
consistently reduced for both supervised and random scenar-
ios.

1. INTRODUCTION
Picture a scenario where many small, stationary, wireless

sensors are deployed in a large environment. As limited bat-
tery life is a critical performance bottleneck for wireless sen-
sor networks (WSNs), the system employs many wireless
charging vehicles (WCVs) that traverse the environment and
recharge sensors. WCVs first receive charge from a base sta-
tion, then search the environment for a sensor, and recharge
the sensor once in close proximity. After recharging the sen-
sor, a WCV returns to a base station to recharge itself, before
heading out once more in search of sensors. The system in-
cludes many base stations, which are mobile and capable or
relocating. For the system to efficiently recharge the sensors,
the mobile base stations should be placed as to minimize the
cumulative distance traveled by WCVs.

However, for some reason, be it wireless interference, secu-

rity, or privacy concerns, only local communication is possi-
ble, meaning information is only be exchanged when a WCV
returns to a base station. Non-local communication, such as
a remote operator controlling a mobile vehicle, or long-range
broadcasts of information, is not possible. A corollary of this
constraint is that there is no sense of global positioning, such
as coordinates, and the system is unaware of sensor locations.
But then how can the WCVs navigate between the sensors
and base stations? How can the base stations be intelligently
placed without being told where to go?

The presented solution employs swarm intelligence.
Swarm intelligent systems are characterized by emergent
problem solving capability, where simple behaviors aggre-
gated across many agents give rise to a complex collective be-
havior. Emergence is often described as a whole greater than
the sum of its parts, because the capabilities of the system
arise from the synergistic interactions of the agents. For the
aforementioned system, simple behaviors are assigned to the
WCVs and base stations that result in base stations migrating
to efficient locations that minimize WCV travel distance, a
technique called Decentralized K-means clustering.

1.1. Decentralized K-Means Clustering
Within the context of rechargeable MANETs, Decentral-

ized K-means clustering utilizes emergent behavior to guide
mobile base stations to locations that minimize distance trav-
eled by WCVs. Assuming that sensors are recharged by
WCVs traveling from the base station nearest the sensor, sen-
sors can be grouped according to the nearest base station.
The process of assigning unlabeled data objects to groups is a
well-studied technique in data analysis called clustering [11].

One of the earliest and most frequently utilized clustering
algorithms is K-means [16, 10]. K-means partitions n data
objects into k disjoint subsets S j so as to minimize the sum of
squared-error

J =
K

∑
j=1

∑
n∈S j

|xn−µ j|2 (1)

where xn represents a data object and µ j is the geometric cen-
ter, or the centroid, of the data objects in S j. Similar to the
problem of placing base stations relative to sensor locations,
K-means calculates clusters based on the distance between
cluster centroids and data objects.
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However, K-means is centrally computed by an entity with
global coordinate information, in contrast to the constraints
of the proposed problem. Often such central algorithms are
computationally inefficient, as even K-means is NP-hard [10].
The proposed technique achieves a similar clustering to k-
means through emergent behavior, and is called Decentral-
ized K-means. Applications of Decentralized K-means clus-
tering include mobile ad hoc networks.

1.2. Mobile Ad hoc Networks
Micro-electro-mechanical system advancement has en-

abled development of low-cost, low-power sensor nodes. Mo-
bile ad hoc networks (MANETs) are wireless sensor networks
(WSNs) made up of mobile sensor nodes that communicate
without a fixed infrastructure or centralized administrator.
Nodes can sense and interact with the environment, perform
on-board computation, and communicate with other nodes as
well as a central base station. Communication may be routed
through intermediate nodes. Nodes can be autonomous or
centrally controlled. Since nodes are battery powered, system
lifetime is a critical consideration for application design.

1.2.1. DDDAS
A related objective is the implementation of Decentral-

ized K-means into the Dynamic Data Driven Application
(DDDAS) framework. DDDAS captures the synergistic abil-
ity to integrate real-time data into an executing application,
while the application also guides the measurement process
[3]. Research into the application of DDDAS for the com-
mand and control of UAV swarms, a MANET instance, has
garnered increasing attention [18]. The non-linear relation-
ship between swarm control parameters and swarm perfor-
mance makes poor

1.2.2. Wireless Rechargeable Sensor Networks
Breakthroughs in rechargeable lithium batteries and wire-

less energy transfer have led to Wireless Rechargeable Sen-
sor Networks (WRSNs), where nodes can be wirelessly
recharged up to 3 meters [13]. Systems have since been devel-
oped that utilize wireless charging vehicles (WCVs), mobile
vehicles with high volume batteries that wirelessly recharge
sensor nodes [21]. Progress in such systems is evident in
the commercial availability of WCVs [28] and the establish-
ment by the Wireless Power Consortium of an international
standard for wireless charging interoperability. Well-designed
WRSNs offer potentially infinite system lifetimes.

Many wireless charging protocols have addressed different
types of WRSNs. Protocols have been designed for a single
stationary charger to support many mobile sensor nodes [30],
for a single WCV to charge many stationary nodes [21], for
multiple WCVs charging many stationary nodes [27], and for
sensor nodes to collaboratively charge one other [31]. Often,

systems incorporating WCVs borrow concepts from Mes-
sage Ferrying, a technique for efficient data transfer in sparse
WSNs. With Message Ferrying, rather than nodes broadcast-
ing data over costly distances, power is conserved via mobile
nodes transporting data between stationary nodes and base
stations [33]. One prevailing organization for data ferrying
is a three-tiered architecture, with a tier of central base sta-
tions, a tier of stationary sensor nodes, and an intermediate
tier of mobile transport nodes [22]. Systems have also been
proposed that incorporate mobile nodes for both tasks of data
gathering and wireless charging [32, 7].

1.2.3. Boomerang Behavior
Whether wirelessly charging or data ferrying, mobile nodes

transporting resources between a base station and outer nodes
perform a simple, recurrent behavior of seeking out a location
of interest, then returning to base. Specifically, a mobile node
departs a base station in search of an object or location of
interest. Upon detecting the object or location, the node tran-
sitions to a return state and heads back to base. The node may
stay at the base station for a length of time, or until another
signal triggers the node to set out again in search of another
object or location. The behavior, deemed Boomerang behav-
ior, is depicted in Figure 1.

The Boomerang behavioral pattern is prevalent in many
MANET applications. For example, systems utilizing Un-
manned Aerial Vehicles (UAVs) for fire-fighting [24] exer-
cise Boomerang behavior when UAVs search for fires, deploy
a fire-retardant payload, then return to base for refill. More-
over, UAV systems delivering medical supplies [5] must re-
plenish from a central repository after providing for the field.
Many UAV systems exhibiting Boomerang behavior can be
implemented within the DDDAS framework [3]. Almost any
system characterized by the three-tiered transport node archi-
tecture demonstrates Boomerang behavior.

However, though widespread, Boomerang systems gener-
ally require a high degree of coordination, communication
connectivity, and computationally-intensive centralized plan-
ning, resulting in an complex, energy-intensive system in an

ReturnSearch

Home Signal (HS)

¬HS

Location Signal (TS)

¬TS

Figure 1: Boomerang behavior of Wireless Charge Vehicles
(WCV), where a WCV departs a mobile base station in search
of food, and then upon finding food, returns to the nearest mo-
bile base station. The WCV represents the intermediate tier in
the three-tiered architecture design pattern (see Figure 2.
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often dynamic environment. Application designers, in con-
trast, strive for systems that are robust, fault-tolerant, flexi-
ble, scalable, and computationally undemanding. For such a
system, inspiration is drawn from biological swarms.

1.3. Swarm Intelligent Systems
Swarm intelligent systems are characterized by emergent

problem solving capability, where simple behaviors aggre-
gated across many agents give rise to complex phenomena,
rendering the collective system greater than the sum of its
parts [2]. Common examples are observed in nature, such as
the coordinated flocking of birds, or ant colonies uncovering
efficient paths to a food source. In ant colonies, ants follow
pheromone trails deposited in the environment by other ants.
Stigmergy describes systems where agent modifications to
the environment impact future actions of other agents. Swarm
intelligent systems exhibit many advantageous properties, in-
cluding robustness, flexibility, scalability, and decentraliza-
tion.

In this paper, we propose a swarm intelligent system for
MANETs exercising Boomerang behavior, or Boomerang
Swarms. The system implements digital pheromones to fa-
cilitate a stigmergic environment for MANETs, resulting in
a solution that is fault-tolerant, scalable, and completely de-
centralized, requiring no (non-local) communication, con-
nectivity, central control or global perspective. Furthermore,
unlike any previous biologically-inspired ant system, the
Boomerang Swarm implements mobile nests, where nests are
guided toward areas of higher food concentration, reducing
the cumulative distance between food and nearest nests. An
agent-based simulation is employed to evaluate the effective-
ness of Boomerang Swarms for Decentralized K-means clus-
tering. An overview of the swarm intelligent system for De-
centralized K-means clustering is presented in section 3. The
agent-based simulation and evaluation are presented in sec-
tion 4. Previous work is discussed next in section 2.

2. PRIOR WORK
Much work on the system lifetime performance bottleneck

of WSNs and MANETs has focused on methods of energy
conservation. An early example is the LEACH protocol [9],
where instead of nodes transmitting sensor data directly to
the sink, data is routed through local cluster-head nodes of
rotating assignment. Other energy conservation approaches
include data ferrying, where mobile relay nodes transport data
between source and destination nodes in sparse networks [1].

Still, energy conservation methods fail to solve the problem
of finite system lifetime presented by battery-powered sen-
sors. Efforts to overcome limited energy storage, other than
energy conservation, include energy harvesting, where energy
is extracted from the environment through means such as so-
lar panels, wind turbines, or from other sources, including

heat, light, radio, or vibrations [20]. Harvesting techniques
experienced limited success, in part due to heavy dependency
on environmental conditions.

Recent breakthroughs in wireless recharging [13] have
turned attention to protocols for WRSNs. Instances of WRSN
include a single mobile charger servicing stationary sensor
nodes. In such a system, designers often outline a perfor-
mance metric, prove an NP-hard reduction, and formulate a
centralized heuristic or approximation utilizing global infor-
mation, like location. In [21], a WRSN prototype is devel-
oped, where the path of the WCV is planned using a greedy
heuristic for the Traveling Salesman Problem. In [23, 29], the
WCV traverses a Hamiltonian cycle to optimize the ratio of
idle time to the renewable energy cycle. For systems with sta-
tionary chargers, [26] investigates optimal node deployment
and routing arrangements through reduction of another NP-
hard problem. In each case, global information is presumed
available, and centralized computation is performed.

While the comparison between mobile charging and data
ferrying is often explicit [29, 21, 31], some approaches go
so far as to combine the two techniques, forming a system
where a mobile vehicle capable of both recharging power
and collecting data. [12] explores maximizing the number
of sensor-captured events by jointly scheduling a WCV and
node duty-cycling. The J-MERDG protocol is proposed in
[32], where a WCV, utilizing global knowledge of sensor lo-
cations, plans an efficient path between sensor nodes. A joint
routing-planning scheme is proposed in [14] that implements
energy-balanced and energy-minimum routing. [7] improves
upon [32] and [12] by incorporating additional time-varying
energy consumption models.

Few WRSNs implement multiple mobile chargers, how-
ever. [31] was the first to propose collaborative charging,
where mobile nodes coordinate a rendezvous in a one-
dimensional system to wirelessly recharge one another. [27]
investigates minimizing the total traveling cost of multiple
chargers while ensuring no nodes fail, leveraging concepts
from Named Data Networking to delivery energy status infor-
mation. To the best of our knowledge, [17] is the only work
to study distributed behaviors of multiple mobile chargers.

In the Boomerang Swarm, the behavior distributed across
multiple mobile chargers draws inspiration from swarm in-
telligent systems. Swarm intelligence is an active subject of
interdisciplinary research founded in the study of complex
systems. Swarms are capable of self-organization and ex-
hibit decentralized control, rendering the swarm both robust
and scalable. The emergent problem-solving ability of ants
through pheromone deposits has been developed into an ef-
fective meta-heuristic for solving challenging combinatorial
optimization problems, such as the Traveling Salesman Prob-
lem [6]. An ant-inspired clustering based on ant cemeteries
and unrelated to the proposed Boomerang Swarm is presented
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in [8]. Swarm robotics, and more broadly swarm engineering,
are disciplines that apply principles of swarm intelligence to
engineering problems. Swarm methods for the command and
control of UAVs has received attention.

The central nest foraging problem is an instance of Search-
and-Return behavior originally observed in ant colonies [25],
and more recently applied within a computer science context
[19, 6], where a non-toroidal grid world consists of a nest lo-
cation and N food source locations. The ant system and agent-
based simulation presented in this paper is adapted from [19],
with notable differences identified in section 3. In general ant
systems, ants begin from the one nest, leave in search of food,
and upon finding a food source, become laden with food and
return to the nest. For our application, we expand the problem
to accommodate M nest locations, where M≥ 1, and nests are
mobile.

3. SYSTEM OVERVIEW
The proposed system is the Boomerang Swarm. The

Boomerang Swarm includes three tiers of agents, depicted
in Figure 2. Within the context of WRSNs, one tier repre-
sents the mobile base stations, an intermediate tier represents
the WCVs exhibit Boomerang behavior (see Figure 1), and
the stationary sensors are represented by a third tier. Within
the context of ant colonies, the tiers represent nests, ants, and
food, respectively. Though biological nests are not mobile,
the Boomerang Swarm is in general designed for Decentral-
ized K-means clustering, where an intermediate tier exhibit-
ing Boomerang behavior facilitates the relocation of a mo-
bile tier, relative to the other stationary tier. Mobile base sta-
tions are initially placed randomly throughout the environ-
ment. WCVs begin at base stations and are evenly distributed
across the base stations.

3.1. Pheromones
The Boomerang Swarm operates in a stigmergic environ-

ment, where indirect communication between WCVs is fa-
cilitated by the environment and impacts future actions of
the WCVs. At each location, the environment is capable of
storing a local pheromone value, represented by a positive
integer. For the agent-based simulation presented in section
4, the environment is a grid where each cell possesses a
pheromone value. The pheromone value of a particular lo-
cation can only be sensed by vehicles from adjacent loca-
tions, i.e. the 8 Moore neighbors of a cell, made up of the
four sides and four diagonal neighbors if the cell. Pheromone
values decrease over time at a constant rate, but are increased
by a WCV when occupying the location. In application, dig-
ital pheromones can be implemented, for example, by small
RFID tags dispersed throughout the environment [4], which
store an integer value that WCVs can read and write.

Figure 2: The three-tiered architecture is a recurring MANET
design pattern and can be applied to several problems. For
WRSNs, the tiers are mobile base stations, WCVs, and sta-
tionary sensors. In ant systems, the similar tiers are nests,
ants, and food, respectively. The system performs Decentral-
ized K-means clustering, where the mobile base station tier
acts as cluster centroids.

In the Boomerang Swarm, WCVs deposit pheromones
while in the Search state (see Figure 1). The value of the
pheromone to deposit is stored internally by each WCV. The
WCVs begin at a mobile base station, where the internal
pheromone value is set to a maximum. After each step, the
WCV deposits the internally stored pheromone value into the
environment, and then the internal pheromone value of the
WCV is decreased by a fixed percentage. Thus, a pheromone
gradient forms in the environment, where the pheromone
concentration is highest around the base stations and de-
creases further away from base station. WCVs randomly
search through the environment, with a lesser probability of
moving backwards. Once a sensor is found, a WCV changes
to a Return state, ceases depositing pheromones, and fol-
lows the path of increasing pheromone concentration, which
always leads back to a base station. Once back at a base
station, WCVs change state again and the internally stored
pheromone value is reset to the maximum. For further details
on pheromone implementation, see [19].

3.2. Mobile Base Stations
Previous ant systems and simulations, such as [19], imple-

ment the base station tier as a single, stationary agent. The
Boomerang Swarm, in contrast, implements many, mobile
base stations agents. For base stations to move in a decen-
tralized manner, base stations update location based on the
direction of returning WCVs. Mobile base stations detect the
returning direction of WCVs, and move one square unit in
the direction from which the WCV came. Essentially, mobile
base stations take one step closer to the sensor found by the
returning WCV. This requires no non-local communication or
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FoodCluster

NestStart
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NestEnd

Figure 3: Test scenario with square patterns of food placed in
each quadrant. Ideal system behavior would minimize the cu-
mulative distance between food and nearest nests by updating
nests to the center of the square.

Parameter Value
Simulation Duration 10,000 time steps

Environment 120x120, Non-Toroidal
Number of WCVs 100

Number of Mobile Base Stations 4
Number of Sensors 16

Food Placement Placed, Random
Evaporation Constant 0.999

Update Cut-Down 0.9
Random Movement Probability 0.1

Obstacles None

Figure 4: Parameters for the Boomerang Swarm agent-based
simulation

coordination. To ensure the pheromone gradient always leads
back to a mobile base station, after each move the mobile base
station updates the new location to a new relative maximum.
A general overview of the system, including the relocation of
mobile base stations, is depicted in Figure 3. The effective-
ness of this simple update mechanism as part of a clustering
algorithm is evaluated in section 4.

4. AGENT-BASED SIMULATION
An agent-based simulation of the Boomerang Swarm was

developed using MASON, an agent-based modeling toolkit
for Java [15]. The simulation adapted previous ant system
work provided as part of the MASON toolkit [19]. The imple-
mented environment is a 120 by 120 non-toroidal grid world,
with 4 mobile base stations, 16 sensors, and 100 WCVs. Fur-
ther simulation parameters are outlined in Figure 4.

To evaluate the effectiveness of the Boomerang Swarm for
Decentralized K-means clustering, the simulation was used

to measure how the cumulative distance of sensors to nearest
base stations changes over time. At each time step, the closest
base station is determined for each sensor, and the distance is
summed over all sensors.

Two different scenarios for placement of the sensors are
tested. One scenario, Random Placement, randomly places
the 16 sensors throughout the environment. The other sce-
nario, Fixed Placement, places the 16 sensors into a predeter-
mined layout of 4 separate squares, depicted in Figure 3 and
Figure 8. Specifically, 4 20-cell by 20-cell squares are placed
in each quadrant of the environment, with top-left sensors of
each squares located at (20, 20), (20, 80), (80, 20), and (80,
80). Both scenario was run 100 times, each run for 10,000
time steps.

The results are depicted in Figure 5 and Figure 6. Box plots
present the distribution of cumulative distances for the 100
simulation runs at every 500 time steps. For both Random
Placement and Fixed Placement scenarios, results clearly
demonstrate that cumulative distance decreases over time, for
all quartiles of the box plot. The random placement of sensors
leads to greater distribution of cumulative distances, but also
a greater reduction over time.
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Figure 5: Cumulative distance from sensors to nearest base
stations over time for 100 simulations, with sensors randomly
placed.

The Fixed Placement scenario can be considered a form of
supervised clustering, since groupings are classified. Super-
vised clustering can be evaluated using the cluster purity mea-
sure, which evaluates classification based on the number of
correct and incorrect classifications for a given cluster. Purity
is scored from 0 to 1, where 1 is considered a perfect cluster-
ing. The purity of the Fixed Placement scenario is depicted in
Figure 7, showing over half of the 100 Fixed Placement sim-
ulations resulted in perfect cluster classification. Moreover,
the dotted line in Figure 6 shows the global optimum for mo-
bile base station placement, which was achieved in roughly a
quarter of the simulations.
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Figure 8: Screenshots from an agent-based simulation of the Boomerang Swarm. Four mobile base stations are initially placed
randomly throughout the environment, and 16 sensors, represented by candy, are placed in 4 predetermined squares of 4 sensors
each. The hundred black dots are WCVs. At the start, in 1, no pheromones have been deposited. The beginning of pheromone
deposits are visible around the base stations in 2, and pheromones are visible in varying shades throughout the environment in
3-6. A Voronoi Tessellation visualization overlays the environment to provide an approximation for which base station a WCV
would return to after locating a sensor. Reduction of cumulative distance from food to nests is observed over time.

Figure 6: Cumulative distance from sensors to nearest base
stations over time for 100 simulations, with sensors placed in
4 predetermined squares of 4 sensors.
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Figure 7: Purity measurement quantifying accuracy of cluster
classification, determined at the end of each fixed placement
simulation run.
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5. CONCLUSION AND FUTURE WORK
A swarm intelligent system called the Boomerang Swarm

was presented that collectively performs Decentralized K-
means clustering. An agent-based model of the Boomerang
Swarm was developed, and the effectiveness of the clustering
technique was evaluated for two scenarios, randomly placed
sensors and fixed placement into predetermined clusters. Re-
sults demonstrate that the technique reduces the cumulative
distance between sensors and mobile base stations, though is
significantly impacted by the initial random placement of the
base stations, much like regular K-means.

The initial presentation of the technique leaves room for
and more in-depth evaluation. Further comparisons can be
drawn between the Boomerang Swarm and regular K-means
by the two methods on the same data sets. Moreover, the im-
pact of initial placement of mobile base stations can be further
investigated. Finally, as WCVs follow pheromone trails with
a certain probability of randomly moving off course, the ef-
fect of the random movement probability parameter on the fi-
nal clustering can be explored. The random movement proba-
bility parameter could be used to control the swarm, and inte-
grated into the DDDAS framework for command and control
of UAV swarms.
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