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Abstract

Mobile communication networks produce massive amounts of data which may be useful
in identifying the location of an emergency situation and the area it affects. Wepropose a one
pass clustering algorithm’s for quickly identifying anomalous data points. We evaluate this
algorithms ability to detect outliers in a data set and describe how such an algorithm may be
used as a component of an emergency response management system.

1 Introduction

Mobile communication networks have recently received attention as viable, pre-existing sensor
networks. City officials in Baltimore use cell phone location data to monitor traffic flow, and the
state of Missouri is considering a similar state wide program that would make traffic information
available to the public [2]. IntelliOne, a company based in Atlanta, GA, recently released a system
that displays anonymous cell phone location data onto a map so that users can identify congested
areas [19]. The emergency response community has also gained interest in using existing cell
phone networks as a way to distribute warnings to citizens [24, 29].

The Wireless Phone Emergency Response (WIPER) system, an emergency response manage-
ment tool currently under development, monitors an existing mobile communication network. Op-
erating under the assumptions that the behavior of the network models the behavior of a population
and that anomalous behavior may indicate an emergency situation has developed, the system at-
tempts to quickly detect anomalies in the network. When anomalies occur, WIPER uses a suite of
simulations to predict how the situation will unfold. This paper focuses on the problem of identify-
ing anomalous events in streaming cell phone data as part of the WIPER system. See [15, 22, 23]
for a complete overview of the WIPER system.

Our goal is to mine the mobile communication network data forevents and anomalies to enable
a more efficient emergency response system. Emergency response systems are tools that aid emer-
gency response managers in the decision making process. Thedifficulty of making good decisions
is increased by several factors including stress, fatigue,restrictive time constraints.
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Another major issue for emergency response managers is the problem of “information over-
load”. Studies have shown a correlation between abundant available data and bad decision making
in crisis situations [25]. Good emergency response systemsprovide access to the large amount of
available data in such a way that the emergency response manager can use the data effectively to
reach good decisions [4, 14]

We believe that an anomaly detection system that monitors incoming streaming mobile com-
muncation network data and posts alerts for the emergency response manager will be a useful
addition to an emergency response system. It will draw the managers attention to information that
may be easily missed in a fast moving, stressful situation. The manager can use or ignore that
information based on their experience. The goal is to provide valuable information without being
too intrusive in the case of false positives.

The nature of the data poses some difficulties in developing an anomaly detection system. First,
a large amount of data arrives at a rapid rate. The sheer volume of the data makes it difficult to store
it in its entirety, much less operate on it using repeated accesses, which is a typical algorithmic
requirement. Therefore, we aim to develop a method that follows the data stream model [3].
Intuitively, a data stream is a sequence of data items that arrive at such a rapid rate that it is only
feasible to operate on a small portion of the data. As each data item is seen, it must be either
incorporated into a summary that requires a small amount of memory or it must be discarded, in
which case it cannot be retrieved. The data stream model imposes two algorithmic limitations:
each item in the dataset may only be read once in a predefined order, and memory usage must be
sub-linear—typically polylogarithmic with respect to thenumber of data items seen. Our main
focus in this paper is the one pass requirement; we present a one pass hybrid clustering algorithm
for anomaly detection.

Another difficulty is the fact that the system is dynamic; theway in which people use the
services provided by a mobile communication network changes over time. The anomaly detection
approach should be sensitive enough to detect anomalies butshould not be so sensitive that it flags
changes in the underlying system as anomalies. That said, the cost of false positives is far less than
the cost of false negatives. The system can handle the detection of a few non-emergency situations,
as long it does not happen too often.

In this paper, we present a one-pass hybrid clustering algorithm for detecting anomalies in
streaming data. We evaluate clusters produced by the algorithm and its ability to detect outliers.
Finally, we discuss how such an algorithm can be used in an emergency response system like the
one described above.

2 Related Work

There is abundant literature on the anomaly detection problem which describes a variety ap-
proaches, including statistical, neural network, and machine learning methods. In this paper, we
focus on the statistical approaches, which can be divided into two categories: parametric and non-
parametric. Parametric approaches tend to be more efficient, but assume the data conforms to a
particular distribution. Non-parametric methods do not assume any particular data distribution;
however, they are often less of efficient. [11, 16, 17].

Clustering is an appealing non-parametric method because itallows us to capture various
classes of “normal” and “abnormal” behavior. This may be quite useful since, in addition to de-
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tecting anomalies caused by events that have never been seenbefore, knowing various types of
“abnormality” would allow us to identify interesting events that have already been seen.

The goal of clustering is to group similar data items together. The concept of similarity is
often defined by a distance metric; we use Euclidean distance. Good clustering algorithms form
clusters such that the distance between intra-cluster points are minimized and the distance between
inter-cluster points are maximized. Anomalies are, intuitively, the data items that are far from all
other data items. There are three major types of clustering algorithms: partitional, hierarchical,
and incremental [13].

2.1 Partitional Clustering

Partitional clustering divides the data set into some number, often a predefined number, of disjoint
subsets.K-means is a classical and simple clustering algorithm that iteratively refines a set of
clusters. The initial cluster centroids for thek-means algorithm arek randomly selected data items
from the data set. Each example in the data set is assigned to the closest cluster, and the new cluster
centroids are computed. This process is repeated until the clusters stabilize,i.e. no point in the
data set receives a new cluster assignment [28].

Expectation maximization (EM) clustering is another classical, partitional algorithm. EM is
a probability based algorithm that seeks to discover a set ofclusters corresponding to a Gaussian
mixture model, a set of Gaussian distributions, that describes the data set. The algorithm is initial-
ized with k random Gaussian distributions and iteratively refines these distributions using a two
step process. The expectation step computes the probability that the data set is drawn from the
current Gaussian mixture—the likelihood. The maximization step reassigns the data items to the
cluster which they most likely belong and recomputes the Gaussian mixture. The algorithm halts
when the likelihood that the dataset is drawn from the Gaussian mixture increases by less than a
user defined threshold.

There are a couple of drawbacks with these approaches. Thek-means and EM algorithms are
not guaranteed to find an optimal set of clusters, and both algorithms requirea priori knowledge of
the number of clusters in the data. These issues can be mitigated by running the algorithms multi-
ple times using different initial conditions and varying numbers of clusters. The best set of clusters
is used to describe the data [28]. Another issue is scalability. These algorithms are inefficient for
very large data sets. Spatial data structures may reduce thetime required by these algorithms.kd-
trees [5] have been used reduce the number of distance calculations required byk-means. Often, a
kd-tree can be used to determine cluster memberships for a subset of points with onlyk distance
computations (rather thank computations for each point in the subset) [20]. Multiresolutionalkd-
trees have been used to improve the performance of EM clustering. A multiresolutionalkd-tree
stores hierarchical summary statistics on the data “owned”by the node: the number of points,
centroid, covariance matrix, and bounding hyperrectangle. With these summaries stored for hier-
archical subsets of the data set, the computation of EM parameters can be accelerated significantly
[18].

2.2 Hierarchical Clustering

Hierarchical clustering divides data into a nested set of partitions and may be useful for discover-
ing taxonomies in data. Agglomerative algorithms produce hierarchical clusters via a bottom-up
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approach in which each example is initially a unique clusterand the clusters are iteratively merged
with their neighbors. Two common agglomerative clusteringalgorithms are single link and com-
plete link. These algorithms are graph based: each example becomes a vertex, and edges are added
based on the distance between pairs of vertices. A level of the hierarchical cluster is defined by
a distance threshold: an edge is added to the graph if and onlyif two examples are separated by
a distance less than the threshold. The connected components and completely connected compo-
nents are the clusters for the single link and complete link algorithms, respectively. The hierarchy
of clusters is formed by iteratively increasing the threshold to produce larger clusters [12, 13].
Since single and complete link clustering compute the distances between all pairs of examples in
the dataset they have greater time complexity than partitional algorithms, however, they produce
optimal solutions.

2.3 Incremental Clustering

Incremental algorithms consider each example once, immediately deciding either to place it in a
existing cluster or to create a new cluster. These algorithms tend to be fast, but are also often
order dependent [13]. The leader algorithm is a simple incremental clustering algorithm in which
each cluster is defined by a single data item—the first item assigned to the cluster. For each data
example, if the example is within a user specified distance ofthe defining item of the closest cluster,
the example is assigned to that cluster; otherwise, the example becomes the defining example of a
new cluster [10].

Portnoyet al. [21] use the leader algorithm for intrusion detection (another application of
anomaly detection. In order to handle arbitrary distributions, they normalize the data usingz-
score, in which the feature values are transformed by

v′

i
=

vi − v̄i

σi

(1)

Unfortunately, this requires two passes over the data. Furthermore, the distance threshold is fixed
over all clusters, and cannot change as the data stream evolves.

2.4 Clustering Algorithms for Streaming Data

A few methods have been developed for clustering data streams. Guhaet al. [9] present a method
based onk-mediods—an algorithm similar tok-means. The clusters are computed periodically as
the stream arrives, using a combination of the streaming data and cluster centers from previous
iterations to keep memory usage low. Aggarwalet al. [1] present a method that takes into account
the evolution of streaming data, giving more importance to more recent data items rather than
letting the clustering results be dominated by a significantamount of outdated data. The algorithm
computesmicro-clusters, which are statistical summaries of the data periodically throughout the
stream. These micro-clusters serve as the data points for a modifiedk-means clustering algorithm.

2.5 Hybrid Clustering

Hybrid clustering combines two clustering algorithms. Cheuet al. [7] examine the use of iterative,
partitional algorithms such ask-means, which tend to be fast, as a method of reducing a data set for
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hierarchical, agglomerative algorithms, such as complete-link, that tend to have high computational
complexity. Chipman and Tibshiran [8] combine agglomerative algorithms, which tend to do well
at discovering small clusters, with top-down methods, which tend to do well at discovering large
clusters. Surdeanuet al. [26] propose a hybrid clustering algorithm for document classification
that uses hierarchical clustering as a method for determining initial parameters for expectation
maximization.

3 The Dataset

We use a data set generated from a database of real world mobile communication network infor-
mation. The database provides the following information for each transaction (use of a service
by a customer): the initiation time, the duration (in minutes), and the name of the service. From
the database, we generated a data set with 17,280 examples. Each example indicates how many
instances of each service are in use for each minute of a 12 dayperiod. We prune the year, month,
and day from the data set due to the small time frame covered and we remove 11 services that are
rarely used. This leaves a data set with 7 features: hour, minute, data transmission usage, gen-
eral packet radio service (GPRS) usage, telephone usage, text messages sent, and text messages
received.

Figure 1 shows the time series for each of the seven service features of the dataset. Note that
each time series exhibits periodic concept drift, an underlying change in the process generating the
data [27], based on the time of day. The telephone time seriesis relatively consistent from day to
day, though the call volume varies somewhat depending on theday of the week and on whether the
day is a holiday. In contrast, there is a noticeable increasein the network load for each of the other
services as time goes by; this is a form of non-periodic concept drift. This suggests that the way
in which people use the telephone service is relatively wellestablished. Notably, this is also the
oldest and most used service. As technology evolves, and peoples habits change, we can expect
new manifestations of concept drift.

3.1 Offline Clustering Analysis

Since many clustering algorithms requirea priori knowledge of the number of clusters, we must
have some way of determining the correct value for this parameter. There are a couple of methods
for accomplishing this. One method is to simply perform the clustering for various numbers of
clusters and choose the best result based on some metric suchas sum squared error or log likeli-
hood. Another method is to use 10-fold cross validation fork ∈ 1, 2, . . . ,m, increasingk until the
quality of the clustering starts to degrade [28].

We use the implementation of expectation maximization provided by the Weka package [28]
with 10-fold cross validation to determine the number of clusters. 10-fold cross validation parti-
tions the data set into 10 equally sized subsets, or folds. Starting withk = 1, for each distinct set of
9 folds we compute clusters and the log likelihood of the cluster set. The value ofk is incremented
by 1 and the process repeats until the average log likelihoodis less than that of the previous iter-
ation. The final result is the set of clusters that maximizes the average log likelihood. While this
approach is not necessarily likely to find a global maxima, itis consistent with Occam’s Razor in
favoring a smaller number of clusters, which corresponds toa simpler hypothesis [28].
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We use expectation maximization to cluster the dataset in the following two ways. First, we
arbitrarily select a day from the data set (day 4) and computethe clusters for each hour of the day
(see figure 2). Second, we compute clusters for accumulated data. We cluster the first day, the first
two days, the first three days, and so on until we include all 12days of data (see figure 3). Using
both approaches, we find that the number of clusters fluctuates, indicating that the appropriate
value fork changes as the stream progresses.

4 A Hybrid Clustering Algorithm

We implement a hybrid clustering algorithm that combines a modification of the leader algorithm
with k-means clustering. The basic idea behind the algorithm is tousek-means to establish a set
of clusters and to use the leader algorithm in conjunction with statistical process control to update
the clusters as new data arrives.

Statistical process control [6] aims to distinguish between “assignable” and “random” varia-
tion. Assignable variations are assumed to have low probability and indicate some anomaly in
the underlying process. Random variations, in contrast, areassumed to be quite common and to
have little effect on the measurable qualities of the process. These two types of variation may be
distinguished based on the difference in some measure on theprocess output from the mean,µ, of
that measure. The threshold is typically some multiple,l, of the standard deviation,σ. Therefore,
if the measured output falls in the rangeµ± lσ, the variance is considered random; otherwise, it is
assignable.

Our algorithm represents the data using two structures: thecluster set and the outlier set. To
save space, the cluster set does not store the examples that make up each cluster. Instead, each
cluster is summarized by the the sum and sum squared values ofits feature vectors along with
the number of items in the cluster. The outlier set consists of the examples that do not belong to
any cluster. We rely on the centroid and the standard deviations of the features to summarize and
update the clusters, so clusters are only accepted when theycontain some minimum number of
examples,m. The algorithm periodically clusters the examples in the outlier set usingk-means.
Clusters which contain at leastm items are reduced to the summary described above and added to
the cluster set.

Algorithm 1 shows the details of our approach. The algorithmtakes three arguments: the
minimum number of elements per cluster,m, number of clusters to compute withk-means,k′,
and a threshold,l that, when multiplied by the magnitude of the standard deviation vector, defines
the boundary between “random” and “assignable” variation.(Note thatk′ specifies the number
of clusters for the first level of the hybrid algorithm, not the final number of clusters produced by
the algorithm.) For each example that arrives, we compute the closest cluster. If the example is
considered an “assignable” variation,i.e. it is further thanlσ from the closest cluster center (or
the set of clusters is empty), the example is placed in the outlier set. Otherwise, if the example is
considered a “random” variation, the example is used to update the summary of the closest cluster.
When there arek′m examples in the outlier set, cluster these examples withk-means. The new
clusters with at leastm examples are added to the cluster set, and all the examples inthe remaining
clusters return to the outlier set.

This algorithm attempts to take advantage of the fact that the mean is sensitive to outliers. By
using means as the components of the cluster center and updating the centers whenever a new
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example is added to a cluster, we hope to handle a certain amount of concept drift. At the same
time, we hope that the use of statistical process control to filter out anomalous data prevents the
cluster centers from being affected by outlying points. This algorithm does not requirea priori
knowledge of the number of clusters (recall that the argument k′ is only the number of clusters for
the first level cluster), since new clusters will form as necessary.

Algorithm 1 INCREMENTALHYBRID(X, l, k,m)

Let X be a list of examples,~x1, ~x2, . . .

Let l be the threshold multiple
Let k be the number of clusters to produce in the first level
Let m be the minimum number of items required to accept a cluster

Let C be the set of clusters
Let U be the set of unclustered examples

C ← ∅
U ← ∅
for all ~x ∈ X do

Find the closest cluster,Ci

if dist(~x, Ci) < l|~σ| then
Add~c to Ci

end if
if |U | = km then

C ′ ← k-MEANS(k, U )
for all c′ ∈ C ′ do

if c′ contains more thanm examplesthen
Add c′ to C

else
Put the items inc′ into U

end if
end for

end if
end for

5 Experimental Setup

We evaluate our incremental hybrid clustering algorithms against the expectation maximization
clustering algorithm. We use the implementation of expectation maximization provided by the
Weka package [28] using 10 fold cross validation to determine the baseline for the number of clus-
ters in the data. For the hybrid algorithm, we usel = 1, 3 andk′ = 5, 10, 20, 30. We evaluate
the cluster quality using sum square error. We examine the number of clusters and outliers pro-
duced by the hybrid algorithm, and we compare the outlier setproduced by the hybrid algorithm
to outliers determined by an offline algorithm.
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6 Results

Figure 4 shows the number of clusters produced by expectation maximization clustering and our
hybrid clustering algorithm. As expected, the number of clusters produced by the hybrid clustering
algorithm decreases as the threshold,l, increases. Figure 5 shows the average number of outliers
resulting from the application of the hybrid clustering algorithm, with error bars. There are a few
factors that cause the number of outliers to fluctuate. Recallthat we only accept clusters fromk-
means if they have some number of minimum members,m. Since we cluster when there aremk′

members in the outlier set, increasingk′ also increases the number of items used byk-means. If
all the clusters are approximately the same size, several clusters with nearlym items may remain
in the outlier set, increasing the number of outliers found by the algorithm. In contrast, if most of
the examples fall in a few clusters, few examples may remain in the outliers set.

Figure 6 shows the sum squared error for expectation maximization and the hybrid algorithm.
The hybrid algorithm produces clusters with less sum squared error, by orders of magnitude, than
the expectation maximization algorithm. Also note that thesum squared error increases as both
parameters,l andk′ increase.

Figure 7 and 8 show the distribution of distances between points in the outlier set and their
nearest neighbor in the full data set. Each figure also shows the nearest neighbor distance distribu-
tion for the full data set. Recall that we defined outliers as points in the dataset that are far from
all other points. We define the extent to which a point is an outlier by its distance from its nearest
neighbor. Data points that are closer to their nearest neighbor are less outlying that data points
that are far from their nearest neighbor. Ideally, we would like the clustering algorithm to detect
all extreme outliers in the nearest neighbor distance distribution for the full data set. These box
plots show that this is not the case. The two most outlying examples are never found by the hybrid
algorithm, and points below the first quartile in “outlierness” are regularly found. However, for
some trials (specifically whenl = 3 andk′ = 20, 30), most of the outliers detected by the hybrid
algorithm are extreme outliers (see figures 8c and 8d).

7 Conclusion

We have discussed issues in anomaly detection on dynamic data stream. We presented a hybrid
clustering algorithm that combinesk-means clustering, the leader algorithm, and statistical process
control. Our results indicate that the quality of the clusters produced by our method are orders
of magnitude better than those produced by the expectation maximization algorithm, using sum
squared error as an evaluation metric. We also compared the outlier set discovered by our algorithm
with the outliers discovered using one nearest neighbor. While our clustering algorithm produced
a number of significant false positive and false negatives, most of the outlier detected by our hybrid
algorithm (with proper parameter settings) were in fact outliers. We believe that our approach has
promise for clustering and outlier detection on streaming data.

We also believe that this approach has promise for use as a component of the WIPER system.
Determining where are new example will be placed—either in an existing cluster or in the outlier
set—can be accomplished quickly. It is simply a matter of finding the closest cluster and determin-
ing if the example falls within its threshold boundary. Oncean initial set of clusters is formed, an
alert can be produced whenever a data item is assigned to the outlier set. Additionally, data items
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assigned to a cluster which is known to contain items produced during an emergency situation can
also be used to inform the emergency response manager of a potential emergency.

7.1 Future Work

We would like to further investigate hybrid clustering algorithms that utilize the leader algorithm
and statistical process control. We plan to examine how the clusters change over time as the
data stream arrives. We also plan to try different algorithms in place ofk-means, particularly an
agglomerative algorithm such as complete link clustering.
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(a) Telephone (b) Data Transmission

(c) GPRS (d) SMS Sent

(e) SMSReceived

Figure 1: Time series for the five service features. These graphs show the number of times each
service is used during each minute of the 12 day period.
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Figure 2: The number of clusters of for each hour of day 4. The number of clusters is determined
using 10 fold cross validation with expectation maximization clustering.
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Figure 3: The number of clusters of the cumulative data set over the 12 days. The number of
clusters is determined using 10 fold cross validation with expectation maximization clustering.
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Figure 4: The mean and standard deviation of the number of clusters produced by the hybrid
clustering algorithm. As expected, running the algorithm with a higher threshold value causes it to
produce fewer clusters.
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in the full dataset for each trial of the hybrid clustering algorithm wherel = 1. The bottom box-
plot in each graph shows the distribution of distances from the nearest neighbor for all examples
in the dataset.
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Figure 8: Box-plots of the distance between the outliers and their nearest neighbor in the full
dataset for each trial of the hybrid clustering algorithm wherel = 1. The bottom box-plot shows
the distribution of distances from the nearest neighbor forall examples in the dataset.
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