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Abstract

Mobile communication networks produce massive amounts of data which magebd u
in identifying the location of an emergency situation and the area it affectqriymse a one
pass clustering algorithm’s for quickly identifying anomalous data points. Yakiate this
algorithms ability to detect outliers in a data set and describe how such aittaigonay be
used as a component of an emergency response management system.

1 Introduction

Mobile communication networks have recently receivedraitbe as viable, pre-existing sensor
networks. City officials in Baltimore use cell phone locatiatalto monitor traffic flow, and the
state of Missouri is considering a similar state wide pragthat would make traffic information
available to the public [2]. IntelliOne, a company based tlaAta, GA, recently released a system
that displays anonymous cell phone location data onto a m#pes$ users can identify congested
areas [19]. The emergency response community has alsodgaitezest in using existing cell
phone networks as a way to distribute warnings to citizeAs22].

The Wireless Phone Emergency Response (WIPER) system, anestogrgsponse manage-
ment tool currently under development, monitors an exgstiobile communication network. Op-
erating under the assumptions that the behavior of the mktwodels the behavior of a population
and that anomalous behavior may indicate an emergencytisiiuzas developed, the system at-
tempts to quickly detect anomalies in the network. When atiesnaccur, WIPER uses a suite of
simulations to predict how the situation will unfold. Thiager focuses on the problem of identify-
ing anomalous events in streaming cell phone data as pareAMPER system. See [15, 22, 23]
for a complete overview of the WIPER system.

Our goal is to mine the mobile communication network dataf@nts and anomalies to enable
a more efficient emergency response system. Emergencynsspgstems are tools that aid emer-
gency response managers in the decision making processlifiibglty of making good decisions
is increased by several factors including stress, fatigrgtrictive time constraints.



Another major issue for emergency response managers igobéem of “information over-
load”. Studies have shown a correlation between abundailable data and bad decision making
in crisis situations [25]. Good emergency response syspgmsde access to the large amount of
available data in such a way that the emergency responsegeracen use the data effectively to
reach good decisions [4, 14]

We believe that an anomaly detection system that monit@@ming streaming mobile com-
muncation network data and posts alerts for the emergersponse manager will be a useful
addition to an emergency response system. It will draw theagers attention to information that
may be easily missed in a fast moving, stressful situatione manager can use or ignore that
information based on their experience. The goal is to pevaluable information without being
too intrusive in the case of false positives.

The nature of the data poses some difficulties in developirapnamaly detection system. First,
a large amount of data arrives at a rapid rate. The sheer eabfithe data makes it difficult to store
it in its entirety, much less operate on it using repeate@ss®s, which is a typical algorithmic
requirement. Therefore, we aim to develop a method thati@lithe data stream model [3].
Intuitively, a data stream is a sequence of data items thiaeaat such a rapid rate that it is only
feasible to operate on a small portion of the data. As each itlath is seen, it must be either
incorporated into a summary that requires a small amounteshamy or it must be discarded, in
which case it cannot be retrieved. The data stream modelsagptwo algorithmic limitations:
each item in the dataset may only be read once in a predefided and memory usage must be
sub-linear—typically polylogarithmic with respect to thember of data items seen. Our main
focus in this paper is the one pass requirement; we preserd pass hybrid clustering algorithm
for anomaly detection.

Another difficulty is the fact that the system is dynamic; thay in which people use the
services provided by a mobile communication network chamyer time. The anomaly detection
approach should be sensitive enough to detect anomalisfibuld not be so sensitive that it flags
changes in the underlying system as anomalies. That saidp#t of false positives is far less than
the cost of false negatives. The system can handle the meteta few non-emergency situations,
as long it does not happen too often.

In this paper, we present a one-pass hybrid clustering ighgorfor detecting anomalies in
streaming data. We evaluate clusters produced by the #lgoand its ability to detect outliers.
Finally, we discuss how such an algorithm can be used in amgamey response system like the
one described above.

2 Related Work

There is abundant literature on the anomaly detection probivhich describes a variety ap-
proaches, including statistical, neural network, and nmectearning methods. In this paper, we
focus on the statistical approaches, which can be dividedwwo categories: parametric and non-
parametric. Parametric approaches tend to be more effilahissume the data conforms to a
particular distribution. Non-parametric methods do nauase any particular data distribution;
however, they are often less of efficient. [11, 16, 17].

Clustering is an appealing non-parametric method becauskows us to capture various
classes of “normal” and “abnormal” behavior. This may beeuiseful since, in addition to de-



tecting anomalies caused by events that have never beerbst®r, knowing various types of
“abnormality” would allow us to identify interesting everthat have already been seen.

The goal of clustering is to group similar data items togethEhe concept of similarity is
often defined by a distance metric; we use Euclidean dista@oed clustering algorithms form
clusters such that the distance between intra-clustetgaie minimized and the distance between
inter-cluster points are maximized. Anomalies are, intely, the data items that are far from all
other data items. There are three major types of clustetgmyithms: partitional, hierarchical,
and incremental [13].

2.1 Partitional Clustering

Partitional clustering divides the data set into some nupddeen a predefined number, of disjoint
subsets. K-means is a classical and simple clustering algorithm tieaatively refines a set of
clusters. The initial cluster centroids for themeans algorithm arkerandomly selected data items
from the data set. Each example in the data set is assignieel ¢tolsest cluster, and the new cluster
centroids are computed. This process is repeated untilltiséecs stabilizei.e. no point in the
data set receives a new cluster assignment [28].

Expectation maximization (EM) clustering is another dleais partitional algorithm. EM is
a probability based algorithm that seeks to discover a selusters corresponding to a Gaussian
mixture model, a set of Gaussian distributions, that dbssrthe data set. The algorithm is initial-
ized with k£ random Gaussian distributions and iteratively refinesdtdstributions using a two
step process. The expectation step computes the probdhdit the data set is drawn from the
current Gaussian mixture—the likelihood. The maximizattep reassigns the data items to the
cluster which they most likely belong and recomputes thesSian mixture. The algorithm halts
when the likelihood that the dataset is drawn from the Ganssiixture increases by less than a
user defined threshold.

There are a couple of drawbacks with these approachesk-fteans and EM algorithms are
not guaranteed to find an optimal set of clusters, and botriggns requirea priori knowledge of
the number of clusters in the data. These issues can be tadigg running the algorithms multi-
ple times using different initial conditions and varyingmioers of clusters. The best set of clusters
is used to describe the data [28]. Another issue is scakabilhese algorithms are inefficient for
very large data sets. Spatial data structures may reduderteeequired by these algorithmisd-
trees [5] have been used reduce the number of distance atdid required by-means. Often, a
kd-tree can be used to determine cluster memberships forsgtsabpoints with onlyk distance
computations (rather thancomputations for each point in the subset) [20]. Multiresohal £d-
trees have been used to improve the performance of EM dlugteA multiresolutionalkd-tree
stores hierarchical summary statistics on the data “owrgdthe node: the number of points,
centroid, covariance matrix, and bounding hyperrectanglgh these summaries stored for hier-
archical subsets of the data set, the computation of EM patexsican be accelerated significantly
[18].

2.2 Hierarchical Clustering

Hierarchical clustering divides data into a nested set ditmms and may be useful for discover-
ing taxonomies in data. Agglomerative algorithms produegdnchical clusters via a bottom-up
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approach in which each example is initially a unique cluatet the clusters are iteratively merged
with their neighbors. Two common agglomerative clusteafgprithms are single link and com-
plete link. These algorithms are graph based: each exaraptanes a vertex, and edges are added
based on the distance between pairs of vertices. A leveleohirarchical cluster is defined by
a distance threshold: an edge is added to the graph if andfamlp examples are separated by
a distance less than the threshold. The connected comsoaeesicompletely connected compo-
nents are the clusters for the single link and complete ligkrithms, respectively. The hierarchy
of clusters is formed by iteratively increasing the thrddhto produce larger clusters [12, 13].
Since single and complete link clustering compute the desta between all pairs of examples in
the dataset they have greater time complexity than parétialgorithms, however, they produce
optimal solutions.

2.3 Incremental Clustering

Incremental algorithms consider each example once, imategideciding either to place it in a
existing cluster or to create a new cluster. These algosttend to be fast, but are also often
order dependent [13]. The leader algorithm is a simple mergal clustering algorithm in which
each cluster is defined by a single data item—the first itengmsd to the cluster. For each data
example, if the example is within a user specified distantleefiefining item of the closest cluster,
the example is assigned to that cluster; otherwise, the phealbecomes the defining example of a
new cluster [10].

Portnoyet al. [21] use the leader algorithm for intrusion detection (&eotapplication of
anomaly detection. In order to handle arbitrary distrigi, they normalize the data using
score, in which the feature values are transformed by

v = (1)

0;

Unfortunately, this requires two passes over the datahBurtore, the distance threshold is fixed
over all clusters, and cannot change as the data streanesvolv

2.4 Clustering Algorithms for Streaming Data

A few methods have been developed for clustering data sgre@uhaet al. [9] present a method
based ork-mediods—an algorithm similar t-means. The clusters are computed periodically as
the stream arrives, using a combination of the streaming datl cluster centers from previous
iterations to keep memory usage low. Aggaresal. [1] present a method that takes into account
the evolution of streaming data, giving more importance twarrecent data items rather than
letting the clustering results be dominated by a signifieambunt of outdated data. The algorithm
computegmicro-clusters which are statistical summaries of the data periodicdtpughout the
stream. These micro-clusters serve as the data points foddied k-means clustering algorithm.

2.5 Hybrid Clustering

Hybrid clustering combines two clustering algorithms. Cheal. [7] examine the use of iterative,
partitional algorithms such dsmeans, which tend to be fast, as a method of reducing a ddta se
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hierarchical, agglomerative algorithms, such as comgieke that tend to have high computational
complexity. Chipman and Tibshiran [8] combine agglomegasigorithms, which tend to do well
at discovering small clusters, with top-down methods, Whend to do well at discovering large
clusters. Surdeanet al. [26] propose a hybrid clustering algorithm for documensslfcation
that uses hierarchical clustering as a method for detengimiitial parameters for expectation
maximization.

3 The Dataset

We use a data set generated from a database of real worldemoaioimunication network infor-
mation. The database provides the following informationdach transaction (use of a service
by a customer): the initiation time, the duration (in mirg)teand the name of the service. From
the database, we generated a data set with 17,280 exampalels.ekample indicates how many
instances of each service are in use for each minute of a 1@at&yd. We prune the year, month,
and day from the data set due to the small time frame cover@avarremove 11 services that are
rarely used. This leaves a data set with 7 features: houmteimata transmission usage, gen-
eral packet radio service (GPRS) usage, telephone usagenéssages sent, and text messages
received.

Figure 1 shows the time series for each of the seven sendterés of the dataset. Note that
each time series exhibits periodic concept drift, an uryitgglchange in the process generating the
data [27], based on the time of day. The telephone time sisrrefatively consistent from day to
day, though the call volume varies somewhat depending odehef the week and on whether the
day is a holiday. In contrast, there is a noticeable increate network load for each of the other
services as time goes by; this is a form of non-periodic cpndgft. This suggests that the way
in which people use the telephone service is relatively estiablished. Notably, this is also the
oldest and most used service. As technology evolves, anplggebabits change, we can expect
new manifestations of concept drift.

3.1 Offline Clustering Analysis

Since many clustering algorithms requaeoriori knowledge of the number of clusters, we must
have some way of determining the correct value for this patamThere are a couple of methods
for accomplishing this. One method is to simply perform thestering for various numbers of
clusters and choose the best result based on some metriasseim squared error or log likeli-
hood. Another method is to use 10-fold cross validatiorkfer 1,2, . . ., m, increasing: until the
quality of the clustering starts to degrade [28].

We use the implementation of expectation maximization ey by the Weka package [28]
with 10-fold cross validation to determine the number ostdus. 10-fold cross validation parti-
tions the data set into 10 equally sized subsets, or foldstigg withk = 1, for each distinct set of
9 folds we compute clusters and the log likelihood of theteluset. The value df is incremented
by 1 and the process repeats until the average log likelil®tEss than that of the previous iter-
ation. The final result is the set of clusters that maximibesaverage log likelihood. While this
approach is not necessarily likely to find a global maximé @donsistent with Occam’s Razor in
favoring a smaller number of clusters, which corresponassmnpler hypothesis [28].



We use expectation maximization to cluster the datasetariadhowing two ways. First, we
arbitrarily select a day from the data set (day 4) and comih&elusters for each hour of the day
(see figure 2). Second, we compute clusters for accumulated /e cluster the first day, the first
two days, the first three days, and so on until we include alldys of data (see figure 3). Using
both approaches, we find that the number of clusters flugpatdicating that the appropriate
value fork changes as the stream progresses.

4 A Hybrid Clustering Algorithm

We implement a hybrid clustering algorithm that combinesaalification of the leader algorithm
with k-means clustering. The basic idea behind the algorithm isé&-means to establish a set
of clusters and to use the leader algorithm in conjunctidh sfiatistical process control to update
the clusters as new data arrives.

Statistical process control [6] aims to distinguish betwesssignable” and “random” varia-
tion. Assignable variations are assumed to have low priibabnd indicate some anomaly in
the underlying process. Random variations, in contrastassamed to be quite common and to
have little effect on the measurable qualities of the prec@sese two types of variation may be
distinguished based on the difference in some measure g@rdlbess output from the mean, of
that measure. The threshold is typically some multiplef the standard deviatiom, Therefore,
if the measured output falls in the range- [0, the variance is considered random; otherwise, it is
assignable.

Our algorithm represents the data using two structurescltister set and the outlier set. To
save space, the cluster set does not store the examplesakatup each cluster. Instead, each
cluster is summarized by the the sum and sum squared valuesfehture vectors along with
the number of items in the cluster. The outlier set consiste@examples that do not belong to
any cluster. We rely on the centroid and the standard dewisf the features to summarize and
update the clusters, so clusters are only accepted wherctdmgin some minimum number of
examplesn. The algorithm periodically clusters the examples in th#i@uset usingk-means.
Clusters which contain at least items are reduced to the summary described above and added to
the cluster set.

Algorithm 1 shows the details of our approach. The algoritiakes three arguments: the
minimum number of elements per cluster, number of clusters to compute withmeanst’,
and a threshold,that, when multiplied by the magnitude of the standard dmnavector, defines
the boundary between “random” and “assignable” variatiiMote thatk’ specifies the number
of clusters for the first level of the hybrid algorithm, noetfinal number of clusters produced by
the algorithm.) For each example that arrives, we compuwekbsest cluster. If the example is
considered an “assignable” variatiare. it is further than/c from the closest cluster center (or
the set of clusters is empty), the example is placed in thiieoset. Otherwise, if the example is
considered a “random” variation, the example is used to tgpiti@ summary of the closest cluster.
When there aré’m examples in the outlier set, cluster these examples kvitineans. The new
clusters with at least: examples are added to the cluster set, and all the examlesiamaining
clusters return to the outlier set.

This algorithm attempts to take advantage of the fact tratrikan is sensitive to outliers. By
using means as the components of the cluster center andingpdla¢ centers whenever a new



example is added to a cluster, we hope to handle a certainrdarobaoncept drift. At the same
time, we hope that the use of statistical process controlter fiut anomalous data prevents the
cluster centers from being affected by outlying points. sTélgorithm does not requita priori
knowledge of the number of clusters (recall that the argurieis only the number of clusters for
the first level cluster), since new clusters will form as reseey.

Algorithm 1 INCREMENTALHYBRID(X, [, k, m)

Let X be a list of examples;, 75, . . .

Let !/ be the threshold multiple

Let & be the number of clusters to produce in the first level

Letm be the minimum number of items required to accept a cluster

Let C' be the set of clusters
Let U be the set of unclustered examples

C 1

U«

forall ¥ € X do
Find the closest clustet;;
if dist(#, C;) < [|&| then

Add cto C;
end if
if |U| = km then

C" — k-MEANS(k, U)
forall ¢ € C" do
if ¢ contains more tham exampleghen
Addd toC
else
Put the items in’ into U
end if
end for
end if
end for

5 Experimental Setup

We evaluate our incremental hybrid clustering algorithmaist the expectation maximization
clustering algorithm. We use the implementation of expgemmtamaximization provided by the
Weka package [28] using 10 fold cross validation to deteentine baseline for the number of clus-
ters in the data. For the hybrid algorithm, we dse 1,3 and%’ = 5,10, 20,30. We evaluate
the cluster quality using sum square error. We examine tingbeu of clusters and outliers pro-
duced by the hybrid algorithm, and we compare the outliepssduced by the hybrid algorithm
to outliers determined by an offline algorithm.



6 Results

Figure 4 shows the number of clusters produced by expeotataximization clustering and our
hybrid clustering algorithm. As expected, the number o$tdts produced by the hybrid clustering
algorithm decreases as the threshéldncreases. Figure 5 shows the average number of outliers
resulting from the application of the hybrid clustering@ighm, with error bars. There are a few
factors that cause the number of outliers to fluctuate. Réuailwe only accept clusters from
means if they have some number of minimum membersSince we cluster when there arg’
members in the outlier set, increasikgalso increases the number of items used:byeans. If
all the clusters are approximately the same size, severstierk with nearlyn items may remain
in the outlier set, increasing the number of outliers foupdhe algorithm. In contrast, if most of
the examples fall in a few clusters, few examples may renmeihe outliers set.

Figure 6 shows the sum squared error for expectation maatraizand the hybrid algorithm.
The hybrid algorithm produces clusters with less sum sguarer, by orders of magnitude, than
the expectation maximization algorithm. Also note that shen squared error increases as both
parameterd, and’ increase.

Figure 7 and 8 show the distribution of distances betweentpan the outlier set and their
nearest neighbor in the full data set. Each figure also shosvsdarest neighbor distance distribu-
tion for the full data set. Recall that we defined outliers astsan the dataset that are far from
all other points. We define the extent to which a point is atieuby its distance from its nearest
neighbor. Data points that are closer to their nearest beighre less outlying that data points
that are far from their nearest neighbor. Ideally, we woikd the clustering algorithm to detect
all extreme outliers in the nearest neighbor distanceiligton for the full data set. These box
plots show that this is not the case. The two most outlyingrgias are never found by the hybrid
algorithm, and points below the first quartile in “outliessé are regularly found. However, for
some trials (specifically wheh= 3 and%’ = 20, 30), most of the outliers detected by the hybrid
algorithm are extreme outliers (see figures 8c and 8d).

7 Conclusion

We have discussed issues in anomaly detection on dynanacsttaam. We presented a hybrid
clustering algorithm that combinésmeans clustering, the leader algorithm, and statisticalgss
control. Our results indicate that the quality of the clusteroduced by our method are orders
of magnitude better than those produced by the expectateanmezation algorithm, using sum
squared error as an evaluation metric. We also compareditherset discovered by our algorithm
with the outliers discovered using one nearest neighborléir clustering algorithm produced
a number of significant false positive and false negativestof the outlier detected by our hybrid
algorithm (with proper parameter settings) were in factiets. We believe that our approach has
promise for clustering and outlier detection on streamiaigd

We also believe that this approach has promise for use as parwnt of the WIPER system.
Determining where are new example will be placed—eithemniex@sting cluster or in the outlier
set—can be accomplished quickly. It is simply a matter ofifigdhe closest cluster and determin-
ing if the example falls within its threshold boundary. Omeeinitial set of clusters is formed, an
alert can be produced whenever a data item is assigned tatler set. Additionally, data items



assigned to a cluster which is known to contain items proddcging an emergency situation can
also be used to inform the emergency response manager oftipbemergency.

7.1 Future Work

We would like to further investigate hybrid clustering aigloms that utilize the leader algorithm
and statistical process control. We plan to examine how thsters change over time as the
data stream arrives. We also plan to try different algorghmplace oft-means, particularly an
agglomerative algorithm such as complete link clustering.
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Figure 2: The number of clusters of for each hour of day 4. Tumaler of clusters is determined
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fewer outliers.
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Figure 6: Sum squared error of the clusters for the expectatiaximization and hybrid clustering
algorithms. (Note the axis is log-scale.) The hybrid algorithm produces clustdth less sum
squared error than expectation maximization.

15



s il S 4 r-d-----
R — 0q F--- - - -
s r-{f--1= 5 oam-—-[J1---4
EE RS b - -4 o B
b F--C—1---+ o F--- LT _L}--+
g4 F-- T 1--- s o -~ ]I---
B R o m— S I i m—
wq Fo- T _F--- o Fo-- LT 1---
s r---__TF--- S I E—
T koo - - - I e S
E»—.——Dj————ooo SHFk- - - O 0 O
T T T T T T T T T T T T
o] 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Pairwise distances Pairwise distances
@1=1Fk = (b)l=1,k =10
Ar---CI—3----4 1 oa---LJ7---4
o F---1 ----4 © 1 ou-———{:D———-C
S oam - [J1---- sqr---C I J----- 4
"4 r--- L F---- SR ----- 4
o om---{T]--- o F---LCL +----
g4 r---4 - - s4r---C L I---- 4
- T ---- 4 TR F-----
wqr---CL_F----- wqr---C—-----
sAF---C L 1----- s4F---L_1-----
Cdr-- L F----- cdr-- - F---- 4
E—l——l:lj————ooo E—l——l:lj————ooo
T T T T T T T T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Pairwise distances Pairwise distances
(©l=1,k =20 (d)l =1,k =30

Figure 7: Box-plots of the distribution of distances betwdenoutliers and their nearest neighbor
in the full dataset for each trial of the hybrid clustering@ithm where = 1. The bottom box-
plot in each graph shows the distribution of distances froenrtearest neighbor for all examples
in the dataset.
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Figure 8: Box-plots of the distance between the outliers &ed thearest neighbor in the full
dataset for each trial of the hybrid clustering algorithmewdl = 1. The bottom box-plot shows
the distribution of distances from the nearest neighboallcexamples in the dataset.
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