Finite Mathematics (Math 10120), Spring 2016

Quiz 4, Wednesday March 23

Solutions

- 1. (5 pts) I play a casino game in which I play \$2 to pay. I have a probability .1 of getting my \$2 back and also winning \$3; I have a probability .2 of getting my \$2 back and also winning \$1; I have a probability .3 of getting my \$2 back and winning nothing else; and I have a probability .4 of losing my \$2.
 - Let Y be my net winnings in a play of this game. Calculate the expected value and the variance of Y.

Solution: Here is the probability distribution table of *Y*:

y	$\mathbf{P}(Y=y)$
3	.1
1	.2
0	.3
-2	.4

We can use the following table to calculate E(Y) and $E(Y^2)$:

y	$\mathbf{P}(Y=y)$	$y\mathbf{P}(Y=y)$	y^2	$y^2 \mathbf{P}(Y = y)$
3	.1	.3	9	.9
1	.2	.2	1	.2
0	.3	0	0	0
-2	.4	8	4	1.6
		E(Y) =3		$E(Y^2) = 2.7$

So the expected value of Y is -.3 and the variance is $E(Y^2) - E(Y)^2 = 2.7 - (-.3)^2 = 2.61$.

2. (5 pts) I've just gotten off a flight from Chicago to South Bend. There are four bags in the hold, two of which are mine. The bags will come out on the luggage carousel in a random order. Let X be the number of bags that have come out the moment the second of my bags comes out. For example, if the first two bags out are mine then X = 2; if mine are the last two to come out then X = 4. The other possible value for X is 3.

Find the probability distribution of X. That is, find $\mathbf{P}(X=2)$, $\mathbf{P}(X=3)$ and $\mathbf{P}(X=4)$. Hint: draw a tree diagram, branching on whether the first bag, second bag, third bag etc. is one of mine or not.

x	$\mathbf{P}(X=x)$
2	$1/6 \approx .167$
3	$2/6 = 1/3 \approx .333$
4	3/6 = 1/2 = .5

Solution: Here are all the possibilities for this experiment:

- One of my bags first, one of my bags second, X = 2, probability (2/4)(1/3) = 1/6.
- One of my bags first, one of the other bags second, one of my bags third, X = 3, probability (2/4)(2/3)(1/2) = 1/6
- One of my bags first, one of the other bags second, one of the other bags third, one of my bags fourth, X = 4, probability (2/4)(2/3)(1/2)(1/1) = 1/6

- One of the other bags first, one of my bags second, one of my bags third, X = 3, probability (2/4)(2/3)(1/2) = 1/6
- One of the other bags first, one of my bags second, one of the other bags third, one of my bags fourth, X = 4, probability (2/4)(2/3)(1/2)(1/1) = 1/6
- One of the other bags first, one of the other bags second, one of my bags third, one of my bags fourth, X = 4, probability (2/4)(1/3)(2/2)(1/1) = 1/6

In one of the six equally-likely scenarios X = 2; in two of them X = 3 and in three of them X = 6. That leads to the probability distribution shown above. Notice that the sum of the three assigned probabilities is 1!