| Name:       |  |
|-------------|--|
| Instructor: |  |

## Math 10560, Practice Final: April 28, 2008

- Be sure that you have all 14 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

| PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! |            |            |            |            |            |     |     |     |     |     |     |
|---------------------------------------------------|------------|------------|------------|------------|------------|-----|-----|-----|-----|-----|-----|
| 1.                                                | (a)        | (b)        | (c)        | (d)        | (e)        | 15. | (a) | (b) | (c) | (d) | (e) |
| 2.                                                | (a)        | (b)        | (c)        | (d)        | (e)        | 16. | (a) | (b) | (c) | (d) | (e) |
| 3.                                                | (a)        | (b)        | (c)        | (d)        | (e)        | 17. | (a) | (b) | (c) | (d) | (e) |
| 4.                                                | (a)        | (b)        | (c)        | (d)        | (e)        | 18. | (a) | (b) | (c) | (d) | (e) |
| 5.                                                | (a)        | (b)        | (c)        | (d)        | (e)        | 19. | (a) | (b) | (c) | (d) | (e) |
| 6.                                                | (a)        | (b)        | (c)        | (d)        | (e)        | 20. | (a) | (b) |     | (d) | (e) |
| 7.                                                | (a)        | (b)        | (c)        | (d)        | (e)        | 21. | (a) | (b) | (c) | (d) | (e) |
| 8.                                                | (a)        |            | (c)        | (d)        | (e)        | 22. | (a) | (b) | (c) | (d) | (e) |
| 9.                                                | (a)        | (b)        | (c)        | (d)        | (e)        | 23. | (a) | (b) | (c) | (d) | (e) |
| 10.                                               | (a)        | (b)        | (c)        | (d)        | (e)        | 24. | (a) | (b) | (c) | (d) | (e) |
| 11.<br>12.                                        | (a)<br>(a) | (b)<br>(b) | (c)<br>(c) | (d)<br>(d) | (e)<br>(e) | 25. | (a) | (b) | (c) | (d) | (e) |
| 13.<br>14.                                        | (a)<br>(a) | (b)        | (c)<br>(c) | (d)<br>(d) | (e)<br>(e) |     |     |     |     |     |     |
|                                                   |            |            |            |            |            |     |     |     |     |     |     |

Name: \_\_\_\_\_ Instructor:

## Multiple Choice

**1.**(6 pts.) The function  $f(x) = 2x + \ln x$  is one-to-one. Compute  $(f^{-1})'(2)$ .

 $\frac{1}{3}$ (a)

(b)  $\frac{5}{2}$ 

(c)  $4 + \ln 2$ 

 $\frac{2}{5}$ (d)

 $(e) \quad 0$ 

**2.**(6 pts.) Solve the equation  $\log_4(x) + \log_4(x^2) = -\frac{3}{2}$ . Then x =

- (a)  $\frac{1}{\sqrt{e}}$  (b) 2 (c)  $\frac{1}{2}$  (d)  $\frac{3}{2}$  (e) (e) -2

Name: \_\_\_\_\_\_\_
Instructor: \_\_\_\_\_\_

3.(6 pts.) Use logarithmic differentiation to compute the derivative of the function

$$f(x) = \frac{2^x(x^3+1)}{\sqrt{x+1}}.$$

(a) 
$$f'(x) = \frac{2^x(x^3+1)}{\sqrt{x+1}} \left( \ln 2 + \frac{3x^2}{x^3+1} - \frac{1}{2(x+1)} \right)$$

(b) 
$$f'(x) = \frac{2^x(x^3+1)}{\sqrt{x+1}} \left(\frac{1}{2} + \frac{3x^2}{x^3+1} - \frac{1}{2(x+1)}\right)$$

(c) 
$$f'(x) = \frac{2^x(x^3+1)}{\sqrt{x+1}} \left( \frac{1}{\ln 2} + \frac{1}{x^3+1} - \frac{1}{x+1} \right)$$

(d) 
$$f'(x) = \frac{2^x(x^3+1)}{\sqrt{x+1}} \left(2 + \frac{1}{x^3+1} - \frac{1}{x+1}\right)$$

(e) 
$$f'(x) = \frac{2^x(x^3+1)}{\sqrt{x+1}} \left( \frac{1}{\ln 2} + \frac{3x^2}{x^3+1} - \frac{1}{2(x+1)} \right)$$

**4.**(6 pts.) You begin an experiment at 9am with a sample of 1000 bacteria. An hour later your population has doubled. Assuming exponential growth, what is the population at noon?

- (a) 32,000
- (b) 4,000
- (c) 8,000
- (d)  $1,000e^{-3}$  (e)
- (e)  $1,000e^3$

Name: \_\_\_\_\_\_
Instructor: \_\_\_\_\_

**5.**(6 pts.) Simplify  $\sin^{-1}(\sin \frac{9\pi}{10})$ .

- (a)  $-\frac{\pi}{10}$
- (b)  $\frac{9\pi}{10}$
- (c) not enough information to tell.
- (d)  $\frac{\pi}{10}$
- (e) 0

**6.**(6 pts.) Compute the limit  $\lim_{x\to\infty} (2x)^{\frac{1}{x}}$ .

- (a) 1
- (b) 0
- (c) e
- $(d) \quad 2$
- (e)  $\infty$

Name: \_\_\_\_\_ Instructor:

7.(6 pts.) Evaluate the integral

$$\int_0^{\frac{\pi}{2}} x \sin(x) dx.$$

- (a) 0
- (b) 1

- (c) -1 (d)  $\pi$  (e)  $\frac{\pi}{2}$

**8.**(6 pts.) Find the integral  $\int_0^2 \sqrt{4-x^2} dx$ .

- (a) 0
- (b)  $4 + \sin 4$  (c)  $\pi$  (d)  $\pi + 2$  (e)
- -2

Name: \_\_\_\_\_

Instructor:

9.(6 pts.) Evaluate the integral

$$\int \frac{x-9}{x^2+3x-10} \ dx.$$

- (a)  $\ln \left| \frac{(x-5)^2}{x+2} \right| + C$  (b)  $\ln \left| \frac{x-2}{x+5} \right| + C$  (c)  $\ln \left| \frac{(x+2)^2}{(x-5)^3} \right| + C$
- (d)  $\ln \left| \frac{(x+5)^2}{x-2} \right| + C$  (e)  $\ln \left| \frac{x+5}{(x-2)^2} \right| + C$

10.(6 pts.) Determine whether the following integral converges or diverges. If it converges, evaluate.

$$\int_{-2}^{0} \frac{1}{(x+1)^2} \ dx.$$

- (a) Converges to -2.
- (b) Converges to 0.
- (c) Converges to 2.

- (d) Diverges.
- (e) Converges to 1.

Instructor:

11.(6 pts.) Find the length of the curve

 $y = 1 + \frac{4}{3}x^{3/2}$  for  $0 \le x \le 1$ .

- (a)  $\frac{1}{6}(1-\sqrt{5})$  (b)  $\frac{2}{3}(1-\sqrt{5})$  (c)  $\frac{1}{12}(3\sqrt{3}-1)$
- (d)  $\frac{1}{12}(11\sqrt{5}-1)$  (e)  $\frac{1}{6}(5\sqrt{5}-1)$

- **12.**(6 pts.) Find the centroid of the region bounded by  $y = x^2$  and y = x.
- (a)  $(\frac{1}{2}, \frac{1}{2})$

- (b)  $(\frac{1}{10}, \frac{2}{5})$
- (c)  $(\frac{1}{10}, \frac{1}{15})$

- (d)  $\left(\frac{1}{12}, \frac{1}{15}\right)$
- (e)  $(\frac{1}{2}, \frac{2}{5})$

Name:

Instructor:

13.(6 pts.) The solution to the initial value problem

$$y' = \frac{\sin(x)}{2y+1}$$

$$y(0) = 2$$

satisfies

(a) 
$$2y + 1 = 6 - e^{-\cos x}$$

(b) 
$$y^2 + y = 7 - \cos x$$

$$(c) \quad y^2 + y = 6\cos x$$

(d) 
$$2y + 1 = 5e^{-\cos x}$$

(e) 
$$e^{2y+1} = e^5 + \arcsin x$$

14.(6 pts.) The solution to the initial value problem

$$\frac{dy}{dx} + xy + x = 0 \qquad y(0) = 0$$

is

(a) 
$$y = e^{-\frac{x^2}{2}} - 1$$

(a) 
$$y = e^{-\frac{x^2}{2}} - 1$$
 (b)  $y = e - e^{-\frac{x^2}{2} + 1}$  (c)  $y = xe^x$ 

(c) 
$$y = xe^x$$

(d) 
$$y = 1 - e^{-x}$$

(e) 
$$y = e^{-x} - 1$$

15.(6 pts.) Investigate the convergence or divergence of the sequence

$$\lim_{n\to\infty} (-1)^n \frac{3n^2}{n^2+1}.$$

If the sequence converges, find its limit.

(a) -3

- (b)  $(-1)^n 3$
- (c) The sequence is divergent

(d) 3

 $(e) \quad 0$ 

16.(6 pts.) Investigate convergence or divergence of the series

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(4-\pi)^{n-1}}{\pi^n}.$$

If the series converges, calculate its sum. Note:  $4 > \pi > 3$ .

(a)  $\frac{\pi}{4}$ 

(b)  $-\frac{\pi}{4}$ 

(c) The series is divergent

(d)  $\frac{1}{4}$ 

(e)  $-\frac{1}{4}$ 

Name: Instructor:

17.(6 pts.) The series

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \cos\left(\frac{1}{n}\right)$$

is

- absolutely convergent by limit comparison test with  $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ (a)
- (b) conditionally convergent by root test
- (c) divergent by integral test
- divergent by comparison with  $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ (d)
- (e) absolutely convergent by ratio test

**18.**(6 pts.) Which of the following series converge conditionally?

$$(1)\sum_{n=0}^{\infty} (-1)^n \frac{1}{\sqrt{n}+1};$$

$$(2)\sum_{n=0}^{\infty}\frac{1}{\sqrt{n}+1};$$

$$(1)\sum_{n=0}^{\infty}(-1)^n\frac{1}{\sqrt{n}+1}; \qquad (2)\sum_{n=0}^{\infty}\frac{1}{\sqrt{n}+1}; \qquad (3)\sum_{n=0}^{\infty}(-1)^n\frac{1}{n^{5/2}+1}.$$

- (a) (1) and (2) converge conditionally, (3) does not converge conditionally
- (2) converges conditionally, (1) and (3) do not converge conditionally (b)
- (c) (1) converges conditionally, (2) and (3) do not converge conditionally
- (1) and (3) converge conditionally, (2) does not converge conditionally (d)
- (e) (3) converges conditionally, (1) and (2) do not converge conditionally

Name: \_\_\_\_\_ Instructor:

19.(6 pts.) The series

$$\sum_{n=1}^{\infty} \frac{8^n}{n^2} (x-1)^{3n}$$

has the radius of convergence

- (a) 0
- (b)  $\frac{1}{2}$

- (c)  $\infty$  (d) 1 (e)  $\frac{1}{8}$

20.(6 pts.) Consider the Taylor series of

$$f(x) = \sum_{n=1}^{\infty} \frac{n^n}{n!} x^n.$$

Find  $f^{(100)}(0)$ .

- $100^{100}$ (a)  $\overline{((100)!)^2}$
- (100)!(b)  $\frac{100^{100}}{100^{100}}$

 $100^{100}$ (c)  $\overline{(100)!}$ 

(100)!(d)

 $100^{100}$ (e)

Name: \_\_\_\_\_\_
Instructor:

21.(6 pts.) Which is the only statement that is true about the three series

(I) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{1+n^2}$$
 (II)  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{1+n^2}$  (III)  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}\ln n}{1+n^2}$ ?

- (a) (I) and (III) converge conditionally, (II) converges absolutely
- (b) (I) diverges, (II) converges conditionally, (III) converge absolutely
- (c) (I) and (II) converge absolutely, (III) converges conditionally
- (d) (I) and (III) converge conditionally, (II) diverges
- (e) (I) and (III) converge absolutely, (II) converges conditionally

**22.**(6 pts.) Let  $x = \sin(9t)$  and  $y = \cos(9t)$ . Then  $\frac{dy}{dx} =$ 

(a)  $\tan(9t)$ 

- (b)  $-\tan(9t)$
- (c)  $9\tan(t)$

- (d)  $81 \sec^2(9t)$
- (e)  $\cot(9t)$

Name: \_\_\_\_\_\_

**23.**(6 pts.) The point  $(2, \frac{13\pi}{6})$  in polar coordinates corresponds to which point below in Cartesian coordinates?

- (a)  $(\sqrt{3}, 1)$
- (b)  $(-\sqrt{3}, 1)$
- (c)  $(1, \sqrt{3})$
- (d)  $(-1, \sqrt{3})$
- (e) Since  $\frac{13\pi}{6} > 2\pi$ , there is no such point.

**24.**(6 pts.) Which integral below gives the surface area of the surface of revolution obtained by rotating the polar curve  $r = \sin \theta$ ,  $0 \le \theta \le \pi$  about the x-axis? **Hint:** A polar curve is also a parameterized curve.

(a)  $2\pi \int_0^{\pi} \sin \theta \cos^2 \theta \, d\theta$ 

(b)  $2\pi \int_0^{\pi} \cos^2 \theta \, d\theta$ 

(c)  $2\pi \int_0^{\pi} \sin^2 \theta \, d\theta$ 

(d)  $\frac{\pi}{2} \int_0^{\pi} \sin \theta \cos^2 \theta \, d\theta$ 

(e)  $2\pi \int_0^{\pi} \sin \theta \cos \theta \, d\theta$ 

Name: \_\_\_\_\_\_\_
Instructor: \_\_\_\_\_

**25.**(6 pts.) Find the area inside the cardioid  $r = 1 + \sin \theta$ .



- (a)  $\frac{3}{2}$
- (b)  $2\pi$
- (c) 2
- (d)  $3\pi + \ln 4$  (e)

14

| Name:       |         |  |
|-------------|---------|--|
| Instructor: | ANSWERS |  |

## Math 10560, Practice Final: April 28, 2008

- Be sure that you have all 14 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

| PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! |                                   |            |            |            |            |            |            |            |            |                            |            |
|---------------------------------------------------|-----------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------------------|------------|
| 1.<br>2.                                          | <ul><li>(•)</li><li>(a)</li></ul> | (b)<br>(b) | (c)<br>(•) | (d)<br>(d) | (e)<br>(e) | 15.<br>16. | (a)<br>(a) | (b)<br>(b) | (•)<br>(c) | $(\mathrm{d})$ $(\bullet)$ | (e)<br>(e) |
| 3.<br>4.                                          | (•)<br>(a)                        | (b)<br>(b) | (c)<br>(•) | (d)<br>(d) | (e)<br>(e) | 17.<br>18. | (•)<br>(a) | (b)<br>(b) | (c)<br>(•) | (d)<br>(d)                 | (e)<br>(e) |
| 5.<br>6.                                          | (a)<br>(•)                        | (b)<br>(b) | (c)        | (•)<br>(d) | (e)<br>(e) | 19.<br>20. | (a)<br>(a) | (•)<br>(b) | (c)<br>(c) | (d)<br>(d)                 | (e)<br>(•) |
| 7.<br>8.                                          | (a)<br>(a)                        | (•)<br>(b) | (c)<br>(•) | (d)<br>(d) | (e)<br>(e) | 22.        | (a)<br>(a) | (b)<br>(•) | (c)        | (d)<br>(d)                 | (•)<br>(e) |
| 9.<br>10.                                         | (a)<br>(a)                        | (b)<br>(b) | (c)<br>(c) | (•)<br>(•) | (e)        |            | (•)<br>(a) | (b)        | (c)<br>(•) | (d)<br>(d)                 | (e)        |
| 11.<br>12.                                        | (a)<br>(a)                        | (b)<br>(b) | (c)<br>(c) | (d)<br>(d) | (•)<br>(•) | 25.        | (a)        | (b)        | (c)        | (d)                        | (•)        |
| 13.<br>14.                                        | (a)<br>(•)                        | (•)<br>(b) | (c)<br>(c) | (d)<br>(d) | (e)        |            |            |            |            |                            |            |
|                                                   |                                   |            |            |            |            |            |            |            |            |                            |            |