
Math 10850, Honors Calculus 1

Homework 4

Due in class Friday September 27

General and specific notes on the homework

All the notes from homework 1 still apply!

Reading for this homework

Section 4 of course notes (Sections 4.1 through 4.5 are the important sections; the remaining
sections are for your general edification). The material is covered in Chapter 2 of Spivak.

Assignment

1. Prove the following identities. The main point here is that you should be working
towards laying out your proof in a clear and organized manner. Use the proof from
class that 1 + 2 + . . . + n = n(n + 1)/2 as a template.

• Begin the proof by saying that it will be a proof by induction on n.

• Verify the base case, and when you do so, clearly indicate that that is what you
are doing

• When you move onto to the induction step, clearly indicate that that is what you
are doing.

• In the induction step, explicitly state what you are assuming (the inductive
hypothesis), and then clearly deduce what you want to deduce.

• End with a concluding statement, along the lines of “By induction, we conclude
that . . .”.)

(a) For all natural numbers n,

n∑
k=1

k3 =

(
n(n + 1)

2

)2

.

Note that this says: the sum of the cubes of the first n numbers, is the same as
the square of the sum of the first n numbers; an odd fact!

1



(b) Remember that the Fibonacci numbers are defined by the recurrence relation

fn =


0 if n = 0
1 if n = 1

fn−1 + fn−2 if n ≥ 2.

Prove that for all n ≥ 0,
n∑

k=0

f 2
k = fnfn+1.

(c) For all natural numbers n,

n∑
k=1

(3k2 − 3k + 1) =???.

(Here I’ll leave it up to you to find the correct right-hand side — a simple expression
that doesn’t involve a sum — and then prove that what you have found is correct)

2. (a) Let r be a real number that’s not equal to 1. Prove by induction on n that

1 + r + r2 + . . . + rn =
1− rn+1

1− r
.

(b) Set
S = 1 + r + r2 + . . . + rn.

By multiplying both sides by r and doing some algebraic manipulation on the two
equations, give a different (non-induction) proof of the result from the part (a).

3. In class we defined the expression an for all real a and all natural numbers n, via a
recursive definition. Prove (by induction) that for all natural numbers n and m we have

an+m = anam.

(Hint: don’t try to be too fancy with the induction; pick either induction on n or
induction on m, but not both at once.)

4. Prove that if p, q are rational numbers, x = p +
√
q, and m is a natural number, then

xm = a + b
√
q for some rational numbers a, b.

5. Identify1 the error in the following proof of the claim “All cows are the same color”:

Let p(n) be the predicate “any n cows are the same color”. We prove that p(n) is true
for all n ≥ 1 (and so that all cows are the same color), by induction on n.

Base case n = 1: any one cow is a set of cows all of which are the same color (whatever
color the cow under consideration is). So p(1) is true.

1Clearly identify the specific error — vagueness not acceptable here!
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Induction step: Suppose that for some n ≥ 1, p(n) is true. Let

{Cow1,Cow2, . . . ,Cown,Cown+1}

be a set of n + 1 cows. By the induction hypothesis (the fact that p(n) is True), all
of Cow1, Cow2, . . ., Cown are the same color; call that color C. Also by the induction
hypothesis, all of Cow2, Cow3, . . ., Cown, Cown+1 are the same color (this is another
collection of n cows). That common color must be C, because Cow2 (for example) is
colored C, from the first application of induction hypothesis. It follows that all of Cow1,
Cow2, . . ., Cown, Cown+1 are the same color, C, and so p(n + 1) is True.

By induction, we conclude that p(n) is True for all n ≥ 1, and so all cows are the same
color.

6. The Fibonacci numbers (defined in question 1) are very closely related to the golden
ratio, the number (1 +

√
5)/2 ≈ 1.618, that is often denoted ϕ.

(a) Prove (most easily by induction on n) that for n ≥ 1,

fn ≤ ϕn−1.

(Be careful! There’s a slight trap in this question, into which you may fall if you
are not careful.)

(b) Prove that that for n ≥ 1
fn ≥ ϕn−2.

Note: These two parts together show that fn grows roughly at the same rate as ϕn;
specifically, for all n ≥ 1

0.3819 ≈ 1

ϕ2
≤ fn

ϕn
≤ 1

ϕ
≈ 0.6180.

It’s possible to be more precise, and show that for all large n

fn
ϕn
≈ 1√

5
≈ 0.4472.

(And it’s possible to be much more precise, and give an exact formula for fn in terms
of ϕ).

7. Prove that for all natural numbers n, the expression

2× 7n + 3× 5n − 5

is divisible by 24. (It will be helpful to know that if a divides b, and a divides c, then a
divides any linear combination of b and c; that is, a divides mb + nc for every pair of
integers m,n).
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8. Prove the generalized triangle inequality: for all natural numbers n, if x1, x2, . . . , xn

are real numbers, then

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.

9. For whole numbers n ≥ ` ≥ 0 let

f(n, `) =
∑̀
k=0

(−1)k
(
n

k

)
(so f(n, `) is the alternating sum of the entries along the nth row of Pascal’s triangle,
up to and including the term

(
n
`

)
). For example

• f(0, 0) = (−1)0
(
0
0

)
= 1,

• f(1, 0) = (−1)0
(
1
0

)
= 1,

• f(1, 1) = (−1)0
(
1
0

)
+ (−1)1

(
1
1

)
= 0,

• f(2, 0) = (−1)0
(
2
0

)
= 1,

• f(2, 1) = (−1)0
(
2
0

)
+ (−1)1

(
2
1

)
= −1,

• f(2, 2) = (−1)0
(
2
0

)
+ (−1)1

(
2
1

)
+ (−1)2

(
2
2

)
= 0, and

• f(5, 3) = (−1)0
(
5
0

)
+ (−1)1

(
5
1

)
+ (−1)2

(
5
2

)
+ (−1)3

(
5
3

)
= −4.

By computing f(n, `) for a bunch more small values of n and ` (by hand, or by
computer), conjecture a simple formula for f(n, `) and prove that the formula is correct.

10. In class we saw that the general associative law — no matter how parentheses are
placed around the expression a1 + a2 + . . . + an, the sum is still the same — follows
from the associativity axiom.

Show that the general commutative law — no matter what order a1, a2, . . . , an are
added in, the sum is still the same — follows from the commutativity axiom a+b = b+a.
You may assume the general associative law.

(As a specific clarifying example, the case n = 3 of the general commutative law says
that a + b + c, a + c + b, b + a + c, b + c + a, c + a + b and c + b + a are all the same.)

An extra credit problem

Please submit this on a separate sheet.
On an infinite sheet of white graph paper (a paper with a square grid), n squares are

colored black. At moments t = 1, 2, . . ., squares are recolored according to the following rule:
each square gets the color occurring at least twice in the triple formed by this square, its top
neighbor, and its right neighbor.

1. Prove that after the moment t = n, all squares are white.

2. Can you find, for infinitely many n, an initial configuration of n squares such that
before the moment t = n there are still some squares colored black?
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