Math 10850, Honors Calculus 1

Homework 4

Due in class Friday September 27

General and specific notes on the homework

All the notes from homework 1 still apply!

Reading for this homework

Section 4 of course notes (Sections 4.1 through 4.5 are the important sections; the remaining sections are for your general edification). The material is covered in Chapter 2 of Spivak.

Assignment

1. Prove the following identities. The main point here is that you should be working towards laying out your proof in a clear and organized manner. Use the proof from class that $1+2+\ldots+n=n(n+1) / 2$ as a template.

- Begin the proof by saying that it will be a proof by induction on n.
- Verify the base case, and when you do so, clearly indicate that that is what you are doing
- When you move onto to the induction step, clearly indicate that that is what you are doing.
- In the induction step, explicitly state what you are assuming (the inductive hypothesis), and then clearly deduce what you want to deduce.
- End with a concluding statement, along the lines of "By induction, we conclude that ...".)
(a) For all natural numbers n,

$$
\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Note that this says: the sum of the cubes of the first n numbers, is the same as the square of the sum of the first n numbers; an odd fact!
(b) Remember that the Fibonacci numbers are defined by the recurrence relation

$$
f_{n}=\left\{\begin{array}{cc}
0 & \text { if } n=0 \\
1 & \text { if } n=1 \\
f_{n-1}+f_{n-2} & \text { if } n \geq 2
\end{array}\right.
$$

Prove that for all $n \geq 0$,

$$
\sum_{k=0}^{n} f_{k}^{2}=f_{n} f_{n+1}
$$

(c) For all natural numbers n,

$$
\sum_{k=1}^{n}\left(3 k^{2}-3 k+1\right)=? ? ?
$$

(Here I'll leave it up to you to find the correct right-hand side - a simple expression that doesn't involve a sum - and then prove that what you have found is correct)
2. (a) Let r be a real number that's not equal to 1 . Prove by induction on n that

$$
1+r+r^{2}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

(b) Set

$$
S=1+r+r^{2}+\ldots+r^{n}
$$

By multiplying both sides by r and doing some algebraic manipulation on the two equations, give a different (non-induction) proof of the result from the part (a).
3. In class we defined the expression a^{n} for all real a and all natural numbers n, via a recursive definition. Prove (by induction) that for all natural numbers n and m we have

$$
a^{n+m}=a^{n} a^{m} .
$$

(Hint: don't try to be too fancy with the induction; pick either induction on n or induction on m, but not both at once.)
4. Prove that if p, q are rational numbers, $x=p+\sqrt{q}$, and m is a natural number, then $x^{m}=a+b \sqrt{q}$ for some rational numbers a, b.
5. Identify ${ }^{1}$ the error in the following proof of the claim "All cows are the same color":

Let $p(n)$ be the predicate "any n cows are the same color". We prove that $p(n)$ is true for all $n \geq 1$ (and so that all cows are the same color), by induction on n.

Base case $n=1$: any one cow is a set of cows all of which are the same color (whatever color the cow under consideration is). So $p(1)$ is true.

[^0]Induction step: Suppose that for some $n \geq 1, p(n)$ is true. Let

$$
\left\{\mathrm{Cow}_{1}, \mathrm{Cow}_{2}, \ldots, \mathrm{Cow}_{n}, \operatorname{Cow}_{n+1}\right\}
$$

be a set of $n+1$ cows. By the induction hypothesis (the fact that $p(n)$ is True), all of $\mathrm{Cow}_{1}, \mathrm{Cow}_{2}, \ldots, \mathrm{Cow}_{n}$ are the same color; call that color C. Also by the induction hypothesis, all of $\mathrm{Cow}_{2}, \mathrm{Cow}_{3}, \ldots, \mathrm{Cow}_{n}, \mathrm{Cow}_{n+1}$ are the same color (this is another collection of n cows). That common color must be C, because Cow_{2} (for example) is colored C, from the first application of induction hypothesis. It follows that all of Cow ${ }_{1}$, $\mathrm{Cow}_{2}, \ldots, \mathrm{Cow}_{n}, \mathrm{Cow}_{n+1}$ are the same color, C, and so $p(n+1)$ is True.

By induction, we conclude that $p(n)$ is True for all $n \geq 1$, and so all cows are the same color.
6. The Fibonacci numbers (defined in question 1) are very closely related to the golden ratio, the number $(1+\sqrt{5}) / 2 \approx 1.618$, that is often denoted φ.
(a) Prove (most easily by induction on n) that for $n \geq 1$,

$$
f_{n} \leq \varphi^{n-1}
$$

(Be careful! There's a slight trap in this question, into which you may fall if you are not careful.)
(b) Prove that that for $n \geq 1$

$$
f_{n} \geq \varphi^{n-2}
$$

Note: These two parts together show that f_{n} grows roughly at the same rate as φ^{n}; specifically, for all $n \geq 1$

$$
0.3819 \approx \frac{1}{\varphi^{2}} \leq \frac{f_{n}}{\varphi^{n}} \leq \frac{1}{\varphi} \approx 0.6180
$$

It's possible to be more precise, and show that for all large n

$$
\frac{f_{n}}{\varphi^{n}} \approx \frac{1}{\sqrt{5}} \approx 0.4472
$$

(And it's possible to be much more precise, and give an exact formula for f_{n} in terms of φ).
7. Prove that for all natural numbers n, the expression

$$
2 \times 7^{n}+3 \times 5^{n}-5
$$

is divisible by 24. (It will be helpful to know that if a divides b, and a divides c, then a divides any linear combination of b and c; that is, a divides $m b+n c$ for every pair of integers m, n).
8. Prove the generalized triangle inequality: for all natural numbers n, if $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers, then

$$
\left|x_{1}+x_{2}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| .
$$

9. For whole numbers $n \geq \ell \geq 0$ let

$$
f(n, \ell)=\sum_{k=0}^{\ell}(-1)^{k}\binom{n}{k}
$$

(so $f(n, \ell)$ is the alternating sum of the entries along the nth row of Pascal's triangle, up to and including the term $\binom{n}{\ell}$). For example

- $f(0,0)=(-1)^{0}\binom{0}{0}=1$,
- $f(1,0)=(-1)^{0}\binom{1}{0}=1$,
- $f(1,1)=(-1)^{0}\binom{1}{0}+(-1)^{1}\binom{1}{1}=0$,
- $f(2,0)=(-1)^{0}\binom{2}{0}=1$,
- $f(2,1)=(-1)^{0}\binom{2}{0}+(-1)^{1}\binom{2}{1}=-1$,
- $f(2,2)=(-1)^{0}\binom{2}{0}+(-1)^{1}\binom{2}{1}+(-1)^{2}\binom{2}{2}=0$, and
- $f(5,3)=(-1)^{0}\binom{5}{0}+(-1)^{1}\binom{5}{1}+(-1)^{2}\binom{5}{2}+(-1)^{3}\binom{5}{3}=-4$.

By computing $f(n, \ell)$ for a bunch more small values of n and ℓ (by hand, or by computer), conjecture a simple formula for $f(n, \ell)$ and prove that the formula is correct.
10. In class we saw that the general associative law - no matter how parentheses are placed around the expression $a_{1}+a_{2}+\ldots+a_{n}$, the sum is still the same - follows from the associativity axiom.
Show that the general commutative law - no matter what order $a_{1}, a_{2}, \ldots, a_{n}$ are added in, the sum is still the same - follows from the commutativity axiom $a+b=b+a$. You may assume the general associative law.
(As a specific clarifying example, the case $n=3$ of the general commutative law says that $a+b+c, a+c+b, b+a+c, b+c+a, c+a+b$ and $c+b+a$ are all the same.)

An extra credit problem

Please submit this on a separate sheet.
On an infinite sheet of white graph paper (a paper with a square grid), n squares are colored black. At moments $t=1,2, \ldots$, squares are recolored according to the following rule: each square gets the color occurring at least twice in the triple formed by this square, its top neighbor, and its right neighbor.

1. Prove that after the moment $t=n$, all squares are white.
2. Can you find, for infinitely many n, an initial configuration of n squares such that before the moment $t=n$ there are still some squares colored black?

[^0]: ${ }^{1}$ Clearly identify the specific error - vagueness not acceptable here!

