Math 10850, Honors Calculus 1

Homework 4

Due in class Friday September 27

General and specific notes on the homework

All the notes from homework 1 still apply!

Reading for this homework

Section 4 of course notes (Sections 4.1 through 4.5 are the important sections; the remaining
sections are for your general edification). The material is covered in Chapter 2 of Spivak.

Assignment

1. Prove the following identities. The main point here is that you should be working
towards laying out your proof in a clear and organized manner. Use the proof from
class that 1 +2+ ...+ n=n(n+ 1)/2 as a template.

Begin the proof by saying that it will be a proof by induction on n.

Verify the base case, and when you do so, clearly indicate that that is what you
are doing

When you move onto to the induction step, clearly indicate that that is what you
are doing.

In the induction step, explicitly state what you are assuming (the inductive
hypothesis), and then clearly deduce what you want to deduce.

End with a concluding statement, along the lines of “By induction, we conclude
that ..."”.)

For all natural numbers n,
S (10
= 5 .

Note that this says: the sum of the cubes of the first n numbers, is the same as
the square of the sum of the first n numbers; an odd fact!



(b) Remember that the Fibonacci numbers are defined by the recurrence relation

0 ifn=20
fn71+.fn72 1fn2 2.

Prove that for all n > 0,

Zf;? = fufos1-
k=0

(¢) For all natural numbers n,

n

> (3K — 3k 4 1) =777,

k=1

(Here I'll leave it up to you to find the correct right-hand side — a simple expression
that doesn’t involve a sum — and then prove that what you have found is correct)
2. (a) Let r be a real number that’s not equal to 1. Prove by induction on n that
1 —pntl

l+r+r’+.. .+ =
1—r

(b) Set
S=14r+r>+.. . +r"

By multiplying both sides by r and doing some algebraic manipulation on the two
equations, give a different (non-induction) proof of the result from the part (a).

3. In class we defined the expression a™ for all real a and all natural numbers n, via a
recursive definition. Prove (by induction) that for all natural numbers n and m we have

(Hint: don’t try to be too fancy with the induction; pick either induction on n or
induction on m, but not both at once.)

4. Prove that if p, ¢ are rational numbers, x = p + /g, and m is a natural number, then
2™ = a + by/q for some rational numbers a, b.

5. Identify! the error in the following proof of the claim “All cows are the same color”:

Let p(n) be the predicate “any n cows are the same color”. We prove that p(n) is true
for all n > 1 (and so that all cows are the same color), by induction on n.

Base case n = 1: any one cow is a set of cows all of which are the same color (whatever
color the cow under consideration is). So p(1) is true.

L Clearly identify the specific error — vagueness not acceptable here!



Induction step: Suppose that for some n > 1, p(n) is true. Let
{Cowy, Cowy, ..., Cow,, Cow, 41}

be a set of n + 1 cows. By the induction hypothesis (the fact that p(n) is True), all
of Cowy, Cows, ..., Cow,, are the same color; call that color C. Also by the induction
hypothesis, all of Cows, Cows, ..., Cow,, Cow, are the same color (this is another
collection of n cows). That common color must be C', because Cows (for example) is
colored C, from the first application of induction hypothesis. It follows that all of Cowy,
Cowy, ..., Cow,, Cow, 4 are the same color, C', and so p(n + 1) is True.

By induction, we conclude that p(n) is True for all n > 1, and so all cows are the same
color.

. The Fibonacci numbers (defined in question 1) are very closely related to the golden
ratio, the number (1 ++/5)/2 ~ 1.618, that is often denoted ¢.

(a) Prove (most easily by induction on n) that for n > 1,

fn S ()Onil.
(Be careful! There’s a slight trap in this question, into which you may fall if you
are not careful.)
(b) Prove that that for n > 1
fn Z (pn—2.

Note: These two parts together show that f,, grows roughly at the same rate as ¢";
specifically, for all n > 1

1
¢?

1

0.3819 ~ =
" ¥

~ 0.6180.
It’s possible to be more precise, and show that for all large n
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(And it’s possible to be much more precise, and give an exact formula for f,, in terms
of v).

. Prove that for all natural numbers n, the expression
2x 7" 4+3x5" =5

is divisible by 24. (It will be helpful to know that if a divides b, and a divides ¢, then a
divides any linear combination of b and ¢; that is, a divides mb + nc for every pair of
integers m, n).



8.

10.

Prove the generalized triangle inequality: for all natural numbers n, if xq,xs,..., 2,
are real numbers, then

[Z1 @24+ @] o] 4 |2+ + [zl

For whole numbers n > ¢ > 0 let

f@%f)==§;C—Dk(Z>

(so f(n,?) is the alternating sum of the entries along the nth row of Pascal’s triangle,

up to and including the term (’Z)) For example

o £(0,0)=(=1)°(F) =1,

o f(1,0)=(-1)°() =1,

o f(11)=(-1)°() +(=1)'(;) =0,

o f(2,0)=(-1)°() =1,

o f(21)=(-1"@) + (D' () =-1,

o £(22)=(-1°()+ (-D'() + (-1)*(3) =0, and

o f(5.3)=(=1°@) + (=1)'() + (=1*() + (-1)*(5) = 4

By computing f(n,¢) for a bunch more small values of n and ¢ (by hand, or by
computer), conjecture a simple formula for f(n,¢) and prove that the formula is correct.

In class we saw that the general associative law — no matter how parentheses are
placed around the expression a; + as + ... + a,, the sum is still the same — follows
from the associativity axiom.

Show that the general commutative law — no matter what order aq,as,...,a, are
added in, the sum is still the same — follows from the commutativity axiom a+b = b+a.
You may assume the general associative law.

(As a specific clarifying example, the case n = 3 of the general commutative law says
thata+b+c,a+c+bb+a+c,b+c+a,c+a+band c+ b+ a are all the same.)

An extra credit problem

Please submit this on a separate sheet.

On an infinite sheet of white graph paper (a paper with a square grid), n squares are
colored black. At moments t = 1,2,..., squares are recolored according to the following rule:
each square gets the color occurring at least twice in the triple formed by this square, its top
neighbor, and its right neighbor.

1.

Prove that after the moment ¢ = n, all squares are white.

2. Can you find, for infinitely many n, an initial configuration of n squares such that

before the moment t = n there are still some squares colored black?



