Math 10850, Honors Calculus 1

Homework 5

Due in class Friday October 11

General and specific notes on the homework

All the notes from homework 1 still apply!

Reading for this homework

Section 5 of the course notes (functions \& graphs), and/or Spivak Chapter $3 \& 4$.

Assignment

1. Let $f(x)=1 /(1+x)$.
(a) What is $f(f(x))$? And what is the domain of this new function?
(b) What is $f(c x)$, where c is some fixed real number? And what is the domain of this new function?
(c) For which real numbers c, is there a number x such that $f(c x)=f(x)$?
(d) For which numbers c is it true that $f(c x)=f(x)$ for (at least) two different numbers x ?
2. Find the domain of each of these functions.
(a) $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$.
(b) $f(x)=1 /(x-1)+1 /(x-2)$.
(c) $f(x)=\sqrt{1-x^{2}}+\sqrt{x^{2}-1}$.
3. A function f is said to be even if $f(x)=f(-x)$ for all x, and odd if $f(x)=-f(-x)$ for all x (so $f(x)=|x|$ is even and $f(x)=x^{3}$ is odd, for example).
(a) Determine whether $f+g$ is even, odd, or not necessarily either in the four cases obtained by choosing f even or odd, and g even or odd. (Note: here, if you think that $f+g$ is (say) even, then you should show why $(f+g)(-x)=(f+g)(x)$ follows from whatever properties of f, g you are assuming. If you think that it's not possible to say definitely whether $f+g$ is odd or even, you should give explicit
examples. Typically, it will suffice to produce a single example of a pair f, g with $f+g$ neither even nor odd - witnesses by an x with $(f+g)(-x) \neq(f+g)(x)$ and $(f+g)(-x) \neq-(f+g)(x)$.
(b) Do the same for $f \cdot g$.
(c) Do the same for $f \circ g$.
(d) Prove that every even function f can be written as $f(x)=g(|x|)$, for infinitely many functions g.
4. For each of the following assertions, either give a proof (if the assertion is true) or a counterexample (if it is false).
(a) $f \circ(g+h)=f \circ g+f \circ h$.
(b) $(g+h) \circ f=g \circ f+h \circ f$.
(c) $1 /(f \circ g)=(1 / f) \circ g$.
(d) $1 /(f \circ g)=f \circ(1 / g)$.
5. Indicate on the real number line the set of all x satisfying the following conditions. Also express each set in interval notation (possibly using \cup).
(a) $\left|x^{2}-1\right|<1 / 2$.
(b) $1 /\left(1+x^{2}\right) \leq a$ (the answer may depend on a, so you may have to consider cases).

In the following two questions, I'm asking you to draw graphs/regions of the plane. Please draw your axes using a straightedge; label both axes, and include a scale on both axes! (Otherwise, your graph is not fully interpretable). Give your graphs a little space - don't try to scrunch two of them side-by-side on the page. When an endpoint of a continuous ${ }^{1}$ piece of your graph is not part of the graph, indicate this by a hollow circle. When it is part of the graph, indicate this by a solid circle.
6. Sketch in the coordinate plane the set of points (x, y) satisfying:
(a) the inequality $x>y$.
(b) the inequality $|x-y|<1$.
(c) the condition $x+y \in \mathbb{Z}$.
(d) $|1-x|=|y-1|$
(e) $x^{2}-2 x+y^{2}=4$.
(f) $y^{2}>2 x^{2}$.
7. The symbol $[x]$ denotes the largest integer which is $\leq x$; it's called the integer part of x. So, for example, $[2.1]=2,[2]=2,[-0.9]=-1$ and $[-1]=-1$.. Draw the graph of the following functions:

[^0](a) $f(x)=[x]$.
(b) $f(x)=[1 / x]$.
(c) $f(x)=\sqrt{x-[x]}$.
8. Find the domains of each of the following functions:
(a) $f(x)=\sqrt{1-x}+\sqrt{2-x}$
(b) $g(x)=1 / \sqrt{x^{2}-5 x+6}$
(c) $h_{2}=h_{1} \circ h_{1}$ where $h_{1}=-1 / x$ for $x>0$ and undefined otherwise.
9. A parabola is the set of points in the plane with the following characteristic property: it is the set of points (x, y) such that the distance from (x, y) to a fixed point (a, b) is equal to the distance ${ }^{2}$ from (x, y) to a fixed line L (that does not pass through (a, b)). Succinctly, a parabola is the set of points equidistant from a fixed point and a fixed line.
A parabola is not always the graph of some function, but when it is, it is the graph of a quadratic function; and conversely, the graph of a quadratic function is a parabola. This question (essentially) asks you to prove this.
(a) Let L be the horizontal line $y=c(c$ some real constant $)$ and let P be the point (a, b), with $b \neq c$. Prove that the parabola determined by L and P is a set of points of the form $\left(x, r x^{2}+s x+t\right)$ for some real constants r, s, t (i.e., the parabola is the graph of a specific quadratic function).
(b) Let $f(x)=a x^{2}+b x+c$ be a quadratic function, with $a>0$. Find a horizontal line L and a point P, not on L, such that the parabola determined by L and P is exactly the graph of f.

An extra credit problem

Please submit this on a separate sheet.
The Dirichlet function, defined by

$$
\operatorname{Dir}(x)=\left\{\begin{array}{cc}
1 & \text { if } x \text { is rational } \\
0 & \text { if } x \text { is irrational, }
\end{array}\right.
$$

has the property that on every open interval (a, b) (however small) it takes on both values 0 and 1 .

Find a more remarkable function. Specifically, find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that has the property that on every open interval (a, b) (however small), f takes on every rational value.

[^1]
[^0]: ${ }^{1}$ Continuous? What does that word mean? I have no idea. But, I'll learn about it in the next week or so, and tell you in class...

[^1]: ${ }^{2}$ The distance from a point P to a line L is defined to be the distance from P to that point on L that is closest to P. It is the distance from P to L along that line through P that is perpendicular to P. If L the horizontal line $y=c$ (c some real constant) and P is the point (a, b), then the distance from P to L is easy to compute: it is $|b-c|$.

