Math 10850, Honors Calculus 1

Homework 6

Due in class Friday October 18

General and specific notes on the homework

All the notes from homework 1 still apply!

Reading for this homework

This homework covers limits — section 6 of the class notes, chapter 5 of Spivak.

Assignment

- 1. In each of the following cases, determine the limit L for the given a, and prove that it is indeed the limit by finding, for each $\varepsilon > 0$, a δ (probably depending on ε) such that $|f(x) L| < \varepsilon$ for all x satisfying $0 < |x a| < \delta$.
 - (a) f(x) = 100/x, a = 1.
 - (b) $f(x) = x^4 + 1/x$, arbitrary a > 0.
- 2. Calculate the following limits, *not* directly from the definition, but instead using the various theorems we have proven about limits.
 - (a) $\lim_{x \to 2} \frac{x^3 8}{x 2}.$ (b) $\lim_{x \to y} \frac{x^n - y^n}{x - y}.$ (c) $\lim_{h \to 0} \frac{\sqrt{a + h} - \sqrt{a}}{h}.$
- 3. For this question, the usual rules apply: if it is your understanding that a certain phenomenon holds in general, then you should provide a proof/justification that that is the case; if it does not hold in general, a single explicit counterexample is enough.
 - (a) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both do not exist, can $\lim_{x\to a} (f(x) + g(x))$ exist?
 - (b) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both do not exist, can $\lim_{x\to a} f(x)g(x)$ exist?
 - (c) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} (f(x) + g(x))$ both exist, must $\lim_{x\to a} g(x)$ exist?
 - (d) If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} g(x)$ does not exist, can $\lim_{x\to a} (f(x) + g(x))$ exist?
 - (e) If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} f(x)g(x)$ exists, does it follow that $\lim_{x\to a} g(x)$ exists?

- 4. (a) Prove that lim_{x→0} f(x) = lim_{x→0} f(x³).
 (b) Give an example where lim_{x→0} f(x²) exists, but lim_{x→0} f(x) doesn't.
- 5. Let f, g, h be three functions, and let a be some real number. Suppose that there is some number $\Delta > 0$ such that on the interval $(\Delta - a, \Delta + a)$ it holds that $f(x) \leq g(x) \leq h(x)$ (except possibly at a, which might or might not be in the domains of any of the three functions). Suppose further that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} h(x)$ both exist and both equal L. Prove that $\lim_{x\to a} g(x)$ exists and equals L.

(This is an example of a squeeze theorem: the function g is being squeezed between f and h near a.)

- 6. Prove that $\lim_{x\to 1} 1/(x-1)$ does not exist.
- 7. (a) Prove that if $\lim_{x\to a} g(x) = 0$, then $\lim_{x\to a} g(x) \sin(1/x) = 0$.
 - (b) Suppose that $\lim_{x\to 0} g(x) = 0$ and $|h(x)| \le M$ for all x, for some $M \ge 0$. Prove that $\lim_{x\to 0} g(x)h(x) = 0$.
- 8. Here's the definition of $\lim_{x\to a} f(x) = L$, in symbols:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x)((0 < |x - a| < \delta) \Rightarrow (|f(x) - L| < \varepsilon)). \quad (\star)$$

(a) Here's a very similar-looking statement (with some <'s changed to \leq 's):

$$(\forall \varepsilon > 0) (\exists \delta > 0) (\forall x) ((0 < |x - a| \le \delta) \Rightarrow (|f(x) - L| \le \varepsilon)). \quad (\star \star)$$

- i. Does $(\star\star)$ imply (\star) ?
- ii. Does (\star) imply ($\star\star$)?
- (b) Here's another very similar-looking statement (with the order of quantifiers changed at the beginning):

$$(\exists \delta > 0)(\forall \varepsilon > 0)(\forall x)((0 < |x - a| < \delta) \Rightarrow (|f(x) - L| < \varepsilon)). \qquad (\star \star \star)$$

- i. Does $(\star \star \star)$ imply (\star) ?
- ii. Does (\star) imply $(\star \star \star)$?
- iii. If f satisfies $(\star \star \star)$, what must it look like near a?

An extra credit problem

Suppose that for each natural number n, A_n is a finite set of numbers, all in (0, 1), and that whenever $m \neq n$, A_n and A_m have no elements in common. Define

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is not in } A_n \text{ for any } n, \\ 1/n & \text{if } x \in A_n. \end{cases}$$

- 1. Prove that for all $a \in (0, 1)$, $\lim_{x \to a} f(x) = 0$.
- 2. Show that this conclusion no longer necessarily holds if even one of the A_n is allowed to be infinite.
- 3. Why did I demand that A_n and A_m have no members in common for $n \neq m$?