Math 10850, Honors Calculus 1

Homework 6

Due in class Friday October 18

General and specific notes on the homework

All the notes from homework 1 still apply!

Reading for this homework

This homework covers limits - section 6 of the class notes, chapter 5 of Spivak.

Assignment

1. In each of the following cases, determine the limit L for the given a, and prove that it is indeed the limit by finding, for each $\varepsilon>0$, a δ (probably depending on ε) such that $|f(x)-L|<\varepsilon$ for all x satisfying $0<|x-a|<\delta$.
(a) $f(x)=100 / x, a=1$.
(b) $f(x)=x^{4}+1 / x$, arbitrary $a>0$.
2. Calculate the following limits, not directly from the definition, but instead using the various theorems we have proven about limits.
(a) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$.
(b) $\lim _{x \rightarrow y} \frac{x^{n}-y^{n}}{x-y}$.
(c) $\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h}$.
3. For this question, the usual rules apply: if it is your understanding that a certain phenomenon holds in general, then you should provide a proof/justification that that is the case; if it does not hold in general, a single explicit counterexample is enough.
(a) If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both do not exist, can $\lim _{x \rightarrow a}(f(x)+g(x))$ exist?
(b) If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both do not exist, can $\lim _{x \rightarrow a} f(x) g(x)$ exist?
(c) If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a}(f(x)+g(x))$ both exist, must $\lim _{x \rightarrow a} g(x)$ exist?
(d) If $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} g(x)$ does not exist, can $\lim _{x \rightarrow a}(f(x)+g(x))$ exist?
(e) If $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x) g(x)$ exists, does it follow that $\lim _{x \rightarrow a} g(x)$ exists?
4. (a) Prove that $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} f\left(x^{3}\right)$.
(b) Give an example where $\lim _{x \rightarrow 0} f\left(x^{2}\right)$ exists, but $\lim _{x \rightarrow 0} f(x)$ doesn't.
5. Let f, g, h be three functions, and let a be some real number. Suppose that there is some number $\Delta>0$ such that on the interval $(\Delta-a, \Delta+a)$ it holds that $f(x) \leq g(x) \leq h(x)$ (except possibly at a, which might or might not be in the domains of any of the three functions). Suppose further that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} h(x)$ both exist and both equal L. Prove that $\lim _{x \rightarrow a} g(x)$ exists and equals L.
(This is an example of a squeeze theorem: the function g is being squeezed between f and h near a.)
6. Prove that $\lim _{x \rightarrow 1} 1 /(x-1)$ does not exist.
7. (a) Prove that if $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} g(x) \sin (1 / x)=0$.
(b) Suppose that $\lim _{x \rightarrow 0} g(x)=0$ and $|h(x)| \leq M$ for all x, for some $M \geq 0$. Prove that $\lim _{x \rightarrow 0} g(x) h(x)=0$.
8. Here's the definition of $\lim _{x \rightarrow a} f(x)=L$, in symbols:

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall x)((0<|x-a|<\delta) \Rightarrow(|f(x)-L|<\varepsilon))
$$

(a) Here's a very similar-looking statement (with some <'s changed to \leq 's):

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall x)((0<|x-a| \leq \delta) \Rightarrow(|f(x)-L| \leq \varepsilon))
$$

i. Does ($* \star$) imply ((\star) ?
ii. Does (\star) imply ($(\star$) ?
(b) Here's another very similar-looking statement (with the order of quantifiers changed at the beginning):

$$
(\exists \delta>0)(\forall \varepsilon>0)(\forall x)((0<|x-a|<\delta) \Rightarrow(|f(x)-L|<\varepsilon)) . \quad(\star \star \star)
$$

i. Does $(\star \star \star)$ imply (\star) ?
ii. Does (\star) imply $(\star \star \star)$?
iii. If f satisfies $(\star \star \star)$, what must it look like near a ?

An extra credit problem

Suppose that for each natural number n, A_{n} is a finite set of numbers, all in $(0,1)$, and that whenever $m \neq n, A_{n}$ and A_{m} have no elements in common. Define

$$
f(x)=\left\{\begin{array}{cc}
0 & \text { if } x \text { is not in } A_{n} \text { for any } n, \\
1 / n & \text { if } x \in A_{n} .
\end{array}\right.
$$

1. Prove that for all $a \in(0,1), \lim _{x \rightarrow a} f(x)=0$.
2. Show that this conclusion no longer necessarily holds if even one of the A_{n} is allowed to be infinite.
3. Why did I demand that A_{n} and A_{m} have no members in common for $n \neq m$?
