Math 10850, Honors Calculus 1

Homework 6

Solutions

1. In each of the following cases, determine the limit L for the given a, and prove that it
is indeed the limit by finding, for each £ > 0, a  (probably depending on ¢) such that
|f(z) — L| < e for all x satisfying 0 < |z — a|] < 9.

(a)

f(z) =100/z, a = 1.

Solution: We claim that the limit is 100.

To prove this, suppose that € > 0 is given. We want to find § such that whenever
0 < |z —1| <0, we have [100/xz — 100| < e.

Now |100/2 — 100| < € is equivalent (after a little algebra) to |z — 1|/|z| < £/100.
Choose 6 < 1/2. Then 0 < |xr — 1] < ¢ implies z € (1/2,3/2), so |z| > 1/2 and
100/|z| < 50.

Choose also 0 < ¢/50. Then 0 < |z — 1| < ¢ implies |z — 1| < £/50.

To get both conditions to hold, we choose § = min{1/2,¢/50}; note that 6 > 0.

For this ¢, or any smaller positive ¢, we have that if 0 < |[z—1| < ¢ then |100/2—100| <
50(£/50) = e.

This proves that lim,_,; 100/ = 100.

f(x) =2t + 1/, arbitrary a > 0.

Solution: We claim that the limit is a* + 1/a.

To prove this, suppose that € > 0 is given. We want to find § such that whenever
0 < |z —al| <6, we have |(z* +1/x — (a* + 1/a)| < e.
Now (using triangle inequality frequently, and using that a > 0, 2* > 0)

((2* + 1/ — (a* +1/a)| = |2* —a*+ (1/z —1/a)|
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If 0 < a/2, that 0 < |z — a| < ¢ implies |z — a] < a/2, which in turn implies
x € (a/2,3a/2), so a/2 < |x| < 3a/2. From this it follows that

(2] + a) (22 + a2) + 1 < 3a+ 9a+ +2 65a3+2
x| +a)(z” +a — —4al|— = = —.
|x|a 2 4 a? 8 a?

then, from the previous algebra, 0 < |z — a] < § implies

(5:min{1/2 e l}
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then 0 < |z — a| < ¢ implies |(x? + 1/:v — (a* +1/a)]
This proves that lim, ,.(z* + 1/2) = a* + 1/a.

If also § < 65&3 3

|(z* + 1/ — (a* —i—l/ )| <e.
So if we take

2. Calculate the following limits, not directly from the definition, but instead using the
various theorems we have proven about limits.

(a)

3-8

hmx~>2 T—2

Solution: The numerator factors as (x —2)(z*+2x+4). Since 2 is not in the domain
of the function, it is legitimate to cancel the factors of  — 2 above and below. This

leads to
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the latter equality since ? + 2x + 4 is rational, with 2 in its domain, so the limit is
the value at 2.

lim,_,, ﬁ

Solution: Viewed as a function of z, with y a constant, the domain of this function
is {z : x # y}. This means that we can divide through by x — y without changing
the limit (we are essentially multiplying the function by 1, with 1 written as (1/(x —
v))/(1/(x — y)), which is valid as long as x # y). This leads to
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This latter is a rational function (in variable ) with y in the domain, so the limit is
the value of the function at y, that is,
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Solution: Here the answer depends on a. If a < 0 then the function f defined by
f(h) = (Va+ h —+/a)/h is not defined near 0 (because for any negative value of h,
a — h < 0), so the limit does not exists.



If @ > 0 then the function is defined near 0 (though not at 0), so we can study the
limit. As long as h # 0 we have
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The last equality is obtained by direct evaluation, valid by the sum-product-reciprocal
theorem, the composition theorem, and the fact (not yet proven) that the square
root function is continuous on its domain.

So

3. For this question, the usual rules apply: if it is your understanding that a certain
phenomenon holds in general, then you should provide a proof/justification that that is
the case; if it does not hold in general, a single explicit counterexample is enough.

(a)

If lim,_,, f(z) and lim,_,, g(z) both do not exist, can lim,_,,(f(x) 4+ g(z)) exist?

Solution: Yes. Consider, for example,

ﬂ@:{j1ﬁx>o

ifxz<0

()_ —1 ifz>0
IWI=3 1 itz <o.

and

Certainly lim, o f(x) and lim,_,o g(z) do not exist. But (f + ¢)(z) = 0 unless x = 0
(at which point the sum is undefined), so lim,,o(f + g)(z) = 0.

If lim, ,, f(z) and lim,_,, g(z) both do not exist, can lim,_,, f(x)g(x) exist?

Solution: Yes. Consider, for example, exactly the same functions f and g from the
previous part. (fg)(x) = —1 unless x = 0 (at which point the product is undefined),

so lim,o(fg)(z) = —1.
If lim, , f(z) and lim,,,(f(z) + g(x)) both exist, must lim,_,, g(z) exist?

Solution: Yes. If lim,_,, f(z) exists, and lim,_,,(f(z) + g(z)) exists, then by the
sum-product-reciprocal theorem,

lim((f(x) + g(x)) — f(x)) = lim g()

r—ra

exists.



(d) If lim,_,, f(z) exists and lim,_,, g(x) does not exist, can lim,_,,(f(z) + g(x)) exist?

Solution: No. If lim, ,,(f(x) 4+ g(x)) existed then (by part b) lim, ,, g(x) would
also exist, a contradiction.

(e) Iflim, ., f(x) exists and lim,_,, f(z)g(z) exists, does it follow that lim, ., g(x) exists?

Solution: It is tempting to say “yes”. If lim, ,, f(x) exists, and lim,_,, f(z)g(z)
exists, then by the sum-product-reciprocal theorem,

lim (f(z)g(x))/ f(x)) = lim g(z)

Tr—a Tr—a
should exist; but this assumes that lim,,, f(z) is not zero. So to find a counter-
example, we need to find functions f and g, and an a, with lim,_,, f(z) = 0,
lim, ,, f(x)g(x) existing, and lim, ., g(z) not existing.

Taking f to be the constant 0 function, g to be the function g(z) = sin(1/z) and
a = 0 works nicely.

4. (a) Prove that lim, o f(z) = lim, o f(23). Clarification: Show that if lim, ,, f(z) = L
then lim, o f(23) exists and equals L.

Solution: There is an implicit assumption here, that both limits exists. We will
show that if lim,_,o f(x) = L then lim,_,o f(2%) = L.

Suppose that lim, ,o f(z) = L, so that for all € > 0 there is § > 0 such that
0 < |z| < ¢ implies |f(x) — L] < e.

Now, given £ > 0, consider 0 < |z| < 6'/3, where J is exactly as in the last paragraph
(we use here the as-yet-unproven fact that for every positive number ¢, there is
a positive number s such that s = ¢; we call this the cubed root of ¢, or t'/3).
Now 0 < |z| < 63 is the same as —6'/3 < x < §%/3, 2 # 0, which is the same as
—0% < 23 < §, x # 0, which is the same as 0 < |z®| < 6. In this range we have
|f(2®) — L| < ¢, so that lim, o f(z®) = L, as claimed.

We could easily reverse this argument to show that if lim, o f(2%) = L then
lim, ,o f(x) = L, and so prove that if either one of the two limits exist then they
both do, and they are equal.

(b) Give an example where lim, ¢ f(z?) exists, but lim, o f(x) doesn’t.

f(x):{ _11 if x>0

if x <0,

Solution: Let

so that f(z?) = 1if z # 0 (and is undefined at z = 0). We have lim, o f(2?) = 1
but lim, o f(z) does not exist.

5. Let f, g, h be three functions, and let a be some real number. Suppose that there is some
number A > 0 such that on the interval (¢ — A, a 4+ A) it holds that f(z) < g(x) < h(x)
(except possibly at a, which might or might not be in the domains of any of the three
functions). Suppose further that lim,_,, f(x) and lim,_,, h(x) both exist and both equal
L. Prove that lim,_,, g(z) exists and equals L.
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7.

(This is an example of a squeeze theorem: the function g is being squeezed between f and
h near a.)

Solution: Let L be the common value of lim,_,, f(z) and lim,_,, h(z). We aim to show
lim, ,, g(z) = L.

To that end, let € > 0 be given. There is a 4; > 0 such that for = satisfying 0 < |z —a| < i,
we have |f(z) — L| < ¢, and there is a d5 > 0 such that for z satisfying 0 < |z — a| < da,
we have |h(z) — L| < e. Let § > 0 be any number no bigger than d;, d2 and A (e.g.,

0= min{51, (52, A})

For z satisfying 0 < |z — a| < §, we have both |f(z) — L| < ¢ and |h(z) — L| < ¢, in other
words,
L—e< f(z)<h(zx)<L+e.

But now, we know f(z) < g(x) < h(z) for all such x (this is where we use 6 < A); so in
particular, for = satisfying 0 < |z — a| < 6 we have

L—e<yg(z)<L+e
so |g(z) — L| < e. This shows that lim,_,, g(z) = L.
Prove that lim, ,; 1/(x — 1) does not exist.

Solution: Let L be given. We will show that lim,_,; 1/(z — 1) # L.

The main point is this: by taking x close enough to 1 (and, for definiteness, positive)
we can make 1/(z — 1) as large as we want, and in particular larger than |L| + 1. Note
specifically that if

L +2

L +1

then .
L+t
. Eat
and that if 1 <y < x then f(y) > f(x).

So, take € = 1/2. Let 6 > 0 be given.
o If 6 > 1/(|L| + 1) then take x = (|L| + 2)/(]L| + 1) (note that 0 < |z — 1| < J) to

get f(x) = |L|+1,s0|f(z) —L| >1/2 (f L >0, |f(x) — L| =1, and if L < 0,
|f(x)— L =2|L|+1>1).

o If 0 < 1/(|]L| +1) then take x = 1+ §/2 (note that 0 < |z — 1] < J). Since
1<z < ([Ll+2)/(IL1+ 1), get f(z) > f((IL]+2)/(IL] +1)) = [L] + 1, so again
|f(x) = L] = 1/2.

This shows that lim, ,; 1/(x — 1) # L.
(a) Prove that if lim,_,, g(z) = 0, then lim,_,, g(z) sin(1/x) = 0.

Solution: Part (a) is implied by part (b), because |sin(1/z)| <1 for all z # 0, so
we just prove part (b).



(b) Suppose that lim, o g(z) = 0 and |h(z)| < M for all z, for some M > 0. Prove that
lim, o g(x)h(z) = 0.

Solution: Suppose that lim, o g(x) = 0 and |h(x)| < M for all x, for some M > 0.
We claim that lim,_,o g(z)h(z) = 0.

Let € > 0 be given. We need to find 6 > 0 such that 0 < |z| < § implies |g(x)h(z)| < e.

But

l9(x)h(x)] = |g(@)l|h(z)] < Mlg(x)],

so it is enough to find a § > 0 such that 0 < |z| < § implies M|g(x)| < ¢, or
equivalently |g(z)| < /M. Now because lim,_,o g(x) = 0 (and because /M > 0),
there is such a 4.

8. Here’s the definition of lim,_,, f(z) = L, in symbols:

(Ve >0)(30 >0)(V2)((0 < |z —a| <0) = (|f(x) = L| <¢)). (%)

(a) Here’s a very similar-looking statement (with some <’s changed to <’s):

1.

ii.

(Ve > 0)(35 > 0)(¥a)((0 < |z — a] < 6) = (If(2) — L <)) (%)

Does (xx) imply (x)?

Solution: Yes. Suppose we know (xx). We aim to prove (x). Let € > 0 be given.
Apply (%) with “€” replaced by “c/2” (valid, since £/2 > 0). We get that there
is 0 > 0 such that for all x,

0 <]z —a| <O =[lf(z) - LI <e/2].
But then it is certainly true that
0 <l|z—a] <d]=[lf(z) - L] <&/2],

since all x satisfying 0 < |z — a|] < § also satisfy 0 < |r — a| < 0. But then,
further, it is certainly true that

0 <z —al <] = [|f(z) - L| <e],

since €/2 < . So (%) holds, since for all € > 0 we have found a ¢ > 0 such that
for all z, [0 < |z — a| < d] = [|f(z) — L| <¢].

Does (%) imply (xx)?

Solution: Yes. Suppose we know (x). We aim to prove (x*). Let € > 0 be given.
Apply (%) to find a ' > 0 such that for all z, [0 < |z —a| < '] = [|f(x)—L| < €].
Take § = 0'/2. If 0 < |z — a| < 4, then it is certainly true that 0 < |x — a| < ¢,

so it follows that [| f(z) — L| < €], which in turn implies [|f(z) — L| < ¢]. Hence
(x%) is true.

NOTE: This exercise shows that there is no change to the definition of a limit,
if we replace “< §” and/or “< &” with “< §” and/or “< ¢&”



(b) Here’s another very similar-looking statement (with the order of quantifiers changed
at the beginning):

i.

ii.

iil.

(30 > 0)(Ve > 0)(Vx)((0 < |z —a| <) = (|f(x) = L| < ¢e)). (% % *)

Does (x * x) imply (*)?

Solution: Yes. Suppose we know (* xx). Let € > 0 be given. By (% x x) we
know that there is a particular § > 0 (which has nothing to do with ¢), such
that for any particular ¢’ > 0, whenever we have 0 < |z — a| < § we also have
|f(z) — L| < €'. In particular that means that for our specified € > 0, whenever
we have 0 < |z — a| < § we also have |f(x) — L| < e. So (%) holds.

Does (x) imply (x x x)?

Solution: No. To show this, all we need is a single counter-example. Consider
the function f(z) = z, and take a = 0, L = 0. (%) certainly holds:

(Ve > 0)(35 > 0)(Vx)([0 < |z] < 0] = [|z| < €]);

indeed, we may take § = ¢.
However, (x x x) claims

(36 > 0)(Ve > 0)(Vx) ([0 < |z] < 0] = [|z| < €]).
We claim this is false. Indeed, given any 6 > 0, take € = /2. The statement
(v2)([0 < Jo] < 8] = [Jal < 6/2))
is clearly false, as witnessed for example by x = 34 /4.

If f satisfies (* * x), what must it look like near a?

Solution: If (x x x) holds, then there is some number 6 > 0 such that for any «
in both (a — d,a) and (a,a + 6), it holds that for any e > 0, |f(xz) — L| < . This
says that f(z) = L on both these intervals. (Proof: Indeed, suppose there is
some xy € (a — d0,a) U (a,a + 0) with f(z¢) # L. Then |f(xy) — L| > 0. Picking
any € > 0 that is smaller than |f(z¢) — L|, we cannot have |f(zo) — L| < ¢.)
So: if f satisfies (x x x), near a it must be constant, and take the value L.



