Math 10850, Honors Calculus 1

Homework 7

Solutions

1. For each of these functions f, EITHER find a function F, which is continuous at all real numbers, and for which $f(x)=F(x)$ for all x in the domain of f, OR show that no such function F exists. Reiterating the earlier instruction: You don't need to get bogged down in $\varepsilon-\delta$ formalism here; give a clear example of an F if one such exists, and a clear explanation of why no such F exists otherwise.
(a) $f(x)=\frac{x^{2}-4}{x-2}$.

Solution: Away from $x=2$ (the only real not in the domain of f), f is equal to $x+2$. This function is continuous at all real numbers; so $F(x)=x+2$ works as an answer here. Another way of writing it:

$$
F(x)=\left\{\begin{array}{cc}
\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\
4 & \text { if } x=2
\end{array}\right.
$$

(b) $f(x)=\frac{|x|}{x}$.

Solution: No F exists. The domain of f is all reals except 0 , and $\lim _{x \rightarrow 0} f(x)$ does not exist. (Proof [[[NOT REQUIRED!!!]]]: given L, take $\varepsilon=1 / 4$. Given $\delta>0$, in the range $0<|x|<\delta$ there are some x for which $f(x)=1$ ($x=\delta / 2$, say), and some x for which $f(x)=-1(x=\delta / 2$, say $)$. Sine 1 and -1 are distance two apart, it is not possible for both of these values to be in the interval ($L-1 / 4, L+1 / 4$) (which has length only $1 / 2$). So for all L, there is an $\varepsilon>0$ (in particular, $\varepsilon=1 / 4$) such that for all $\delta>0$ there is an x (either $x=\delta / 2$ or $x=-\delta / 2$) such that $0<|x|<\delta$ and $|f(x)-L| \geq \varepsilon$. This is exactly what it means for the limit not to exist.). Hence no matter what we choose for $F(0)$, the function F that extends f to all reals will not be continuous at 0 .
(c) $f(x)=0$, Domain $(f)=\{$ irrational numbers $\}$.

Solution: The constant function F with $F(x)=0$ for all x works here, fairly trivially.
2. For this question, I'm expecting a detailed $\varepsilon-\delta$ argument. Note that part (b) implies part (a); you might choose to do part (a) as a warm-up, or jump straight to part (b) and ignore part (a).
(a) Suppose that f is a function satisfying $|f(x)| \leq|x|$ for all x. Show that f is continuous at 0 .

Solution: Suppose $|f(x)| \leq|x|$ for all x. We claim that $\lim _{x \rightarrow 0} f(x)=0$. Indeed, given $\varepsilon>0$, take $\delta=\varepsilon$. If $0<|x|<\delta$ then $|f(x)| \leq|x|<\delta=\varepsilon$. This proves that $\lim _{x \rightarrow 0} f(x)=0$. To conclude that f is cts at 0 , note that, as pointed out in the question, applying " $|f(x)| \leq|x|$ for all x " at $x=0$ gives $|f(0)| \leq 0$ so $f(0)=0$, and hence $\lim _{x \rightarrow 0} f(x)=0$ implies $\lim _{x \rightarrow 0} f(x)=f(0)$, i.e., f is cts at 0 .
(b) Suppose that g is continuous at 0 , that $g(0)=0$, and that $|f(x)| \leq|g(x)|$ for all x. Prove that f is continuous at 0 .

Solution: The conditions $|f(x)| \leq|g(x)|$ for all x and $g(0)=0$ together imply $f(0)=0$, so we just need to show $\lim _{x \rightarrow 0} f(x)=0$.
Let $\varepsilon>0$ be given. Because g is continuous at 0 (and $g(0)=0$) there is a $\delta>0$ such that $0<|x|<\delta$ implies $|g(x)-g(0)|=|g(x)|<\varepsilon$. But then using $|f(x)| \leq|g(x)|$ for all x, we see that $0<|x|<\delta$ implies $|f(x)| \leq|g(x)|<\varepsilon$. This shows $\lim _{x \rightarrow 0} f(x)=0$.
3. OPTIONAL! Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at 0 but not continuous at any other point. (Note: by shifting, you could then easily find, for any fixed real a, a function that is continuous at a but not continuous at any other point.)

Solution: Here's one possible solution; there are many others.
Consider the function

$$
f(x)=\left\{\begin{array}{cc}
x & f \text { is rational } \\
0 & f \text { is irrational. }
\end{array}\right.
$$

Certainly $|f(x)| \leq|x|$ for all x, and so, by the result of the previous part, f is continuous at 0 .

Using the same proof from class as we used for Dirichlet's function (1 on rationals, 0 on irrationals), we get that f is not continuous at any non-zero point. Specifically: let a be non-zero, say initially $a>0$. Let L be given. Take $\varepsilon=a / 100$. Given $\delta>0$, for x in the range $0<|x-a|<\delta$ there are both irrationals (where f is 0) and rationals. If $a / 2$ is in the range $0<|x-a|<\delta$ then there is some rational in the range between $a / 2$ and a, on which f takes value at least $a / 2$. If If $a / 2$ is not in the range $0<|x-a|<\delta$ then $\delta \leq a / 2$, and so certainly in the range $0<|x-a|<\delta$ there is a rational on which f takes value at least $a / 2$. So either way, there is an x_{1} in the range $0<|x-a|<\delta$ on which f takes value 0 , and an x_{2} in the same range on which f takes value at least $a / 2$. Since these two values are at least $a / 2$ apart, and the interval $(l-\varepsilon, L+\varepsilon)$, having length $2 \varepsilon=a / 50$ cannot contain both $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$, the function f does not tend to a limit L near a; and since was arbitrary, there is no limit. A similar argument can be made if $a<0$.
4. Give an example of a function f such that f is continuous nowhere, but $|f|$ is continuous everywhere. (Given examples we have seen in class, this should be very easy. To re-iterate the introductory note, I'm not looking for ε - δ formalism here, but rather a

- concise,
- complete,
- coherent,
- convincing \&
- correct
explanation; and the same goes for the remaining questions).
Solution: Here's one possible solution; there are many others.
Consider the function

$$
f(x)=\left\{\begin{array}{cc}
1 & f \text { is rational } \\
-1 & f \text { is irrational. }
\end{array}\right.
$$

Using the same proof from class as we used for Dirichlet's function (1 on rationals, 0 on irrationals), we get that f is continuous at no point. But $|f|$ is a constant function (it is always 1), so is continuous everywhere.
5. Find a function f which is continuous at all points on the real line except $1,1 / 2,1 / 3, \ldots$, and 0 , and has the property that none of $\lim _{x \rightarrow 1} f(x), \lim _{x \rightarrow 1 / 2} f(x), \lim _{x \rightarrow 1 / 3} f(x)$, etc., exist, nor $\lim _{x \rightarrow 0} f(x)$.

Solution: There are many possible solutions; here is one.
Take the function which is defined to be

- 1 on the interval $[1, \infty)$
- 2 on the interval $[1 / 2,1$)
- 3 on the interval $[1 / 3,1 / 2)$
- and in general takes constant value n on the interval $[1 / n, 1 /(n-1)),(n \in \mathbb{N})$,
takes the value 0 on $(-\infty, 0)$, and is undefined at 0 . As before, f is cts at any point in any open interval of the form $(-\infty, 0),(1, \infty)$ or $(1 / n, 1 /(n-1)), n \in \mathbb{N}$, and discontinuous at $1,1 / 2,1 / 3$, etc.. And it's discontinuous at 0 , not being defined there. So f has discontinuities exactly at $1,1 / 2,1 / 3, \ldots$ and 0 .

6. (a) Prove that if f is continuous at ℓ, and if $\lim _{x \rightarrow a} g(x)=\ell$, then $\lim _{x \rightarrow a} f(g(x))=f(\ell)$ (SO: "a continuous function can be passed inside a limit"). (Hint: For this you could go right back to the definitions, or you could introduce the function G defined by

$$
G(x)=\left\{\begin{array}{cc}
g(x) & \text { if } x \neq a \\
\ell & \text { if } x=a .
\end{array}\right.
$$

Solution: Recall that in class we proved: if g is cts at a and f is cts at $g(a)$ then $f \circ g$ is cts at a.
As the hint suggests, define

$$
G(x)=\left\{\begin{array}{cl}
g(x) & \text { if } x \neq a \\
\ell & \text { if } x=a
\end{array}\right.
$$

We certainly have $\lim _{x \rightarrow a} G(x)=\lim _{x \rightarrow a} g(x)$ (because G agrees with g away from $a)$, and since $\lim _{x \rightarrow a} g(x)=\ell$ and $G(a)=\ell$ we have $\lim _{x \rightarrow a} G(x)=G(a)$, that is, G is cts at a. We also have that f is cts at $G(a)$ (since $G(a)=\ell$). So $f \circ G$ is cts at a, i.e., $\lim _{x \rightarrow a} f(G(x))=f(G(a))$. But $f(G(a))=f(\ell)$, and $\lim _{x \rightarrow a} f(G(x))=$ $\lim _{x \rightarrow a} f(g(x))$ (since g agrees with G off a). So, as claimed,

$$
\lim _{x \rightarrow a} f(g(x))=f(\ell)
$$

(b) OPTIONAL! Show that if we do not assume continuity of f at ℓ, then it is not generally true that

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right) .
$$

Hint: Consider the function f defined by

$$
f(x)= \begin{cases}0 & \text { if } x \neq \ell \\ 1 & \text { if } x=\ell\end{cases}
$$

Solution (part b): Consider, as suggested, the function

$$
f(x)= \begin{cases}0 & \text { if } x \neq \ell \\ 1 & \text { if } x=\ell .\end{cases}
$$

Certainly this function is not cts at ℓ. In order to show that it not in general true that

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

if we don't assume that f is cts at ℓ, we will use the f defined above. We need to find a function g such that

$$
\begin{equation*}
\lim _{x \rightarrow a} g(x)=\ell \tag{1}
\end{equation*}
$$

so that $f\left(\lim _{x \rightarrow a} g(x)\right)=f(\ell)=1$, but that

$$
\begin{equation*}
\lim _{x \rightarrow a} f(g(x)) \neq 1 \tag{2}
\end{equation*}
$$

We can achieve this by making g a cts function that takes the value ℓ at a (so that (1) holds), but does not take the value a at any other input (so that $f(g(x))=0$ for all $x \neq a$, and so $\lim _{x \rightarrow a} f(g(x))=0$, making (2) hold).
There are many such functions, for example $g(x)=x-a+\ell$.
7. OPTIONAL! (but easy, hopefully. The first part came up in class on Friday before break.)
(a) Prove that if f is continuous on $[a, b]$ then there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous on all of \mathbb{R}, and which satisfies $g(x)=f(x)$ for all $x \in[a, b]$. (I.e., every continuous function on a closed interval can be extended to a continuous function on the reals). Hint: Don't be too fancy with the definition of g to the left of a or to the right of b - the obvious idea works. And again, you don't need to use an $\varepsilon-\delta$ argument; just know that you could, if needed.

Solution: We have defined "cts on $[a, b]$ " to mean: for all $c \in(a, b), \lim _{x \rightarrow c} f(x)=$ $f(c)$, and also both of $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ and $\lim _{x \rightarrow b^{-}} f(x)=f(b)$.
Define

$$
g(x)=\left\{\begin{array}{cc}
f(a) & \text { if } x \leq a \\
f(x) & \text { if } a \leq x \leq b \\
f(b) & \text { if } b \leq x
\end{array}\right.
$$

It is easy to check that g is continuous at every point in each of the intervals $(-\infty, a)$, (b, ∞) and (a, b). The latter is by hypothesis on f. For the two former, let's argue that for $c<a, \lim _{x \rightarrow c} g(x)=g(c)$. Given $\varepsilon>0$, let $\delta>0$ be any number small enough that $(c-\delta, c+\delta) \subseteq(-\infty, a)$ (such a δ exists because $c<a ; \delta=(a-c) / 2$ works). For all x in this interval, and so in particular for all $x, 0<|x-a|<\delta$, we have $g(x)=f(a)=g(c)$, so $|g(x)-g(c)|=0<\varepsilon$. This verifies $\lim _{x \rightarrow c} g(x)=g(c)$; continuity on (b, ∞) is identical.
It remains to check that g is cts at a and b. We just look at a; the case of b is identical. We know $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ so $\lim _{x \rightarrow a^{+}} g(x)=g(a)$. Using a similar argument to the previous paragraph, it is very easy to check that $\lim _{x \rightarrow a^{-}} g(x)=g(a)$. So $\lim _{x \rightarrow a^{+}} g(x)=\lim _{x \rightarrow a^{-}} g(x)=g(a)$, and so $\lim _{x \rightarrow a} g(x)=g(a)$, and g is cts at a.
(b) Show, by an example, that if f is only continuous on the open interval (a, b), then such a g need not necessarily exist. NB: you just need to give a coherent explanation of why your example works; an $\varepsilon-\delta$ proof is not required.
Solution: There are many examples that work here. Here is one. Define $f(x)=$ $1 /\left(x^{2}-1\right)$ on the interval $(-1,1)$. This is continuous, but neither $\lim _{x \rightarrow-1^{+}} f(x)$ nor $\lim _{x \rightarrow 1^{-}} f(x)$ exist (easy exercise, I won't give the details). Now for f to be extended to a function g that is cts on the whole real line, it is necessary for both $\lim _{x \rightarrow-1} g(x)$ and $\lim _{x \rightarrow 1} g(x)$ to exist, which requires $\lim _{x \rightarrow-1^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$ to exist. So f can't be extended to a function that is cts on the whole real line.
8. For each of the following polynomials, find (with justification!) an integer n such that $p(x)=0$ for some $x \in(n, n+1)$, or prove that no such n exists.
(a) $p(x)=x^{5}+5 x^{4}+2 x+1$

Solution: $p(-5)=-9$ and $p(-4)=249$ (found by a little trial-and-error), so by the intermediate value theorem there is $x \in(-5,-4)$ with $p(x)=0$ (note that p is continuous on $[-5,-4]$).
(b) $q(x)=x^{5}+x+100$

Solution: $q(-3)=-146$ and $q(-2)=66$ (found by a little trial-and-error), so by the intermediate value theorem there is $x \in(-3,-2)$ with $p(x)=0$ (note that q is continuous on $[-3,-2]$).
(c) $r(x)=x^{4}+4 x^{3}+7 x^{2}+6 x+3$

Solution: Here a little trial-and-error suggests that $r(x)>0$ for all integers. One way to prove this is to observe:

$$
r(x)=x^{4}+4 x^{3}+7 x^{2}+6 x+3=(x+1)^{4}+x^{2}+2 x+2=(x+1)^{4}+(x+1)^{2}+1
$$

and since $(x+1)^{4} \geq 0,(x+1)^{2} \geq 0$ for all $x \in \mathbb{R}$, we have $r(x) \geq 1$ for all $x \in \mathbb{R}$.
9. Suppose that f is a continuous function on $[a, b]$ (some $a<b$), and that f only takes on rational values. What can you conclude about f ? Justify!

Solution: We can conclude that f is constant. For suppose not; then there are two rational numbers r_{1} and r_{2} such that for some $c, d, a \leq c<d \leq b, f(c)=r_{1}$ and $f(d)=r_{2}$. By the full-strength intermediate value theorem, in the interval $[c, d] f$ takes on all values between r_{1} and r_{2}, and this includes some irrational numbers, contradicting the fact that f only takes on rational values.
10. For this question, $f:[0,1] \rightarrow[0,1]$ is a continuous function on $[0,1]$ that only takes on values between 0 and 1 . Pictures will help for each part.
(a) Prove that there is a number $x, 0 \leq x \leq 1$, such that $f(x)=x$.

Solution: If $f(0)=0$ or if $f(1)=1$ then we are done, so we may assume that $f(0)>0$ and that $f(1)<1$.
Consider the function defined by $h(x)=f(x)-x$, which is continuous on $[0,1]$. We have $h(0)=f(0)-0>0$ and $h(1)=f(1)-1<0$. So by the intermediate value theorem there is $x, 0<x<1$ such that $h(x)=0$. But for such an x we have $f(x)-x=0$, or $f(x)=x$.
(b) The previous part shows that f crosses the diagonal $(0,0)$ to $(1,1)$ of the unit square. Show that it also crosses the other diagonal, the one from $(0,1)$ to $(1,0)$. That is, show that there is an $x, 0 \leq x \leq 1$, such that $(x, f(x))$ lies on the line $x+y=1$.

Solution: If $f(0)=1$ or if $f(1)=0$ then we are done, so we may assume that $f(0)<1$ and that $f(1)>0$.
Consider the function defined by $h(x)=f(x)-(1-x)$, which is continuous on $[0,1]$. We have $h(0)=f(0)-1<0$ and $h(1)=f(1)-0>0$. So by the intermediate value theorem there is $x, 0<x<1$ such that $h(x)=0$. But for such an x we have $f(x)-(1-x)=0$, or $f(x)=1-x$, and so $(x, f(x))$ lies on the line $x+y=1$.
(c) More generally, prove that if g is continuous on [0,1] with EITHER $g(0)=0$ and $g(1)=1$ OR $g(0)=1$ and $g(1)=0$ then there is a number $x, 0 \leq x \leq 1$, such that $f(x)=g(x)$.
Solution: First consider the case $g(0)=0$ and $g(1)=1$. If either $f(0)=0$ or $f(1)=1$ then we are done, so we may assume that $f(0)>0$ and that $f(1)<1$.
Consider the function defined by $h(x)=f(x)-g(x)$, which is continuous on $[0,1]$. We have $h(0)=f(0)-g(0)>0$ and $h(1)=f(1)-g(1)<0$. So by the intermediate value theorem there is $x, 0<x<1$ such that $h(x)=0$. But for such an x we have $f(x)-g(x)=0$, or $f(x)=g(x)$.
Next consider the case $g(0)=1$ and $g(1)=0$. If either $f(0)=1$ or $f(1)=0$ then we are done, so we may assume that $f(0)<1$ and that $f(1)>0$.
Consider the function defined by $h(x)=f(x)-g(x)$, which is continuous on $[0,1]$. We have $h(0)=f(0)-g(0)<0$ and $h(1)=f(1)-g(1)>0$. So by the intermediate value theorem there is $x, 0<x<1$ such that $h(x)=0$. But for such an x we have $f(x)-g(x)=0$, or $f(x)=g(x)$.
11. OPTIONAL! Let f be a continuous function on $[a, b]$ with $f(a)<0<f(b)$. We proved the intermediate value theorem in class by showing that there is a smallest x in $[a, b]$ with $f(x)=0$. If there is more than one x in $[a, b]$ with $f(x)=0$, is there necessarily a second smallest?

Solution: Not necessarily. Consider $a=-1, b=2 / \pi$ and $f(x)$ defined piece-wise:

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } x \leq 0 \\
x \sin (1 / x) & \text { if } x>0
\end{array}\right.
$$

This is continuous on $[-1,2 / \pi]$, and satisfies $f(a)<0<f(b)$. The smallest x in $[a, b]$ with $f(x)=0$ is $x=0$, and there are other inputs to the function that give output 0 . But there is no second-smallest such input; for any $\delta>0$ the interval $(0, \delta)$ contains infinitely many numbers at which the function evaluates to 0 .

