
Math 10850, Honors Calculus 1

Homework 7

Solutions

1. For each of these functions f , EITHER find a function F , which is continuous at all real
numbers, and for which f(x) = F (x) for all x in the domain of f , OR show that no such
function F exists. Reiterating the earlier instruction: You don’t need to get bogged
down in ε-δ formaIism here; give a clear example of an F if one such exists, and a clear
explanation of why no such F exists otherwise.

(a) f(x) = x2−4
x−2 .

Solution: Away from x = 2 (the only real not in the domain of f), f is equal to
x+ 2. This function is continuous at all real numbers; so F (x) = x+ 2 works as an
answer here. Another way of writing it:

F (x) =

{
x2−4
x−2 if x 6= 2,

4 if x = 2.

(b) f(x) = |x|
x

.

Solution: No F exists. The domain of f is all reals except 0, and limx→0 f(x) does
not exist. (Proof [[[NOT REQUIRED!!!]]]: given L, take ε = 1/4. Given δ > 0, in
the range 0 < |x| < δ there are some x for which f(x) = 1 (x = δ/2, say), and some
x for which f(x) = −1 (x = δ/2, say). Sine 1 and −1 are distance two apart, it is
not possible for both of these values to be in the interval (L− 1/4, L+ 1/4) (which
has length only 1/2). So for all L, there is an ε > 0 (in particular, ε = 1/4) such that
for all δ > 0 there is an x (either x = δ/2 or x = −δ/2) such that 0 < |x| < δ and
|f(x)− L| ≥ ε. This is exactly what it means for the limit not to exist.). Hence no
matter what we choose for F (0), the function F that extends f to all reals will not
be continuous at 0.

(c) f(x) = 0, Domain(f) = {irrational numbers}.

Solution: The constant function F with F (x) = 0 for all x works here, fairly trivially.

2. For this question, I’m expecting a detailed ε-δ argument. Note that part (b) implies part
(a); you might choose to do part (a) as a warm-up, or jump straight to part (b) and ignore
part (a).
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(a) Suppose that f is a function satisfying |f(x)| ≤ |x| for all x. Show that f is continuous
at 0.

Solution: Suppose |f(x)| ≤ |x| for all x. We claim that limx→0 f(x) = 0. Indeed,
given ε > 0, take δ = ε. If 0 < |x| < δ then |f(x)| ≤ |x| < δ = ε. This proves that
limx→0 f(x) = 0. To conclude that f is cts at 0, note that, as pointed out in the
question, applying “|f(x)| ≤ |x| for all x” at x = 0 gives |f(0)| ≤ 0 so f(0) = 0, and
hence limx→0 f(x) = 0 implies limx→0 f(x) = f(0), i.e., f is cts at 0.

(b) Suppose that g is continuous at 0, that g(0) = 0, and that |f(x)| ≤ |g(x)| for all x.
Prove that f is continuous at 0.

Solution: The conditions |f(x)| ≤ |g(x)| for all x and g(0) = 0 together imply
f(0) = 0, so we just need to show limx→0 f(x) = 0.

Let ε > 0 be given. Because g is continuous at 0 (and g(0) = 0) there is a δ > 0 such
that 0 < |x| < δ implies |g(x)− g(0)| = |g(x)| < ε. But then using |f(x)| ≤ |g(x)| for
all x, we see that 0 < |x| < δ implies |f(x)| ≤ |g(x)| < ε. This shows limx→0 f(x) = 0.

3. OPTIONAL! Give an example of a function f : R→ R that is continuous at 0 but not
continuous at any other point. (Note: by shifting, you could then easily find, for any
fixed real a, a function that is continuous at a but not continuous at any other point.)

Solution: Here’s one possible solution; there are many others.

Consider the function

f(x) =

{
x f is rational
0 f is irrational.

Certainly |f(x)| ≤ |x| for all x, and so, by the result of the previous part, f is continuous
at 0.

Using the same proof from class as we used for Dirichlet’s function (1 on rationals, 0 on
irrationals), we get that f is not continuous at any non-zero point. Specifically: let a be
non-zero, say initially a > 0. Let L be given. Take ε = a/100. Given δ > 0, for x in the
range 0 < |x− a| < δ there are both irrationals (where f is 0) and rationals. If a/2 is in
the range 0 < |x− a| < δ then there is some rational in the range between a/2 and a, on
which f takes value at least a/2. If If a/2 is not in the range 0 < |x− a| < δ then δ ≤ a/2,
and so certainly in the range 0 < |x− a| < δ there is a rational on which f takes value
at least a/2. So either way, there is an x1 in the range 0 < |x− a| < δ on which f takes
value 0, and an x2 in the same range on which f takes value at least a/2. Since these
two values are at least a/2 apart, and the interval (l − ε, L+ ε), having length 2ε = a/50
cannot contain both f(x1) and f(x2), the function f does not tend to a limit L near a;
and since was arbitrary, there is no limit. A similar argument can be made if a < 0.

4. Give an example of a function f such that f is continuous nowhere, but |f | is continuous
everywhere. (Given examples we have seen in class, this should be very easy. To re-iterate
the introductory note, I’m not looking for ε-δ formalism here, but rather a

• concise,

• complete,
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• coherent,

• convincing &

• correct

explanation; and the same goes for the remaining questions).

Solution: Here’s one possible solution; there are many others.

Consider the function

f(x) =

{
1 f is rational
−1 f is irrational.

Using the same proof from class as we used for Dirichlet’s function (1 on rationals, 0 on
irrationals), we get that f is continuous at no point. But |f | is a constant function (it is
always 1), so is continuous everywhere.

5. Find a function f which is continuous at all points on the real line except 1, 1/2, 1/3, . . .,
and 0, and has the property that none of limx→1 f(x), limx→1/2 f(x), limx→1/3 f(x), etc.,
exist, nor limx→0 f(x).

Solution: There are many possible solutions; here is one.

Take the function which is defined to be

• 1 on the interval [1,∞)

• 2 on the interval [1/2, 1)

• 3 on the interval [1/3, 1/2)

• and in general takes constant value n on the interval [1/n, 1/(n− 1)), (n ∈ N),

takes the value 0 on (−∞, 0), and is undefined at 0. As before, f is cts at any point in any
open interval of the form (−∞, 0), (1,∞) or (1/n, 1/(n− 1)), n ∈ N, and discontinuous
at 1, 1/2, 1/3, etc.. And it’s discontinuous at 0, not being defined there. So f has
discontinuities exactly at 1, 1/2, 1/3, . . . and 0.

6. (a) Prove that if f is continuous at `, and if limx→a g(x) = `, then limx→a f(g(x)) = f(`)
(SO: “a continuous function can be passed inside a limit”). (Hint: For this you could
go right back to the definitions, or you could introduce the function G defined by

G(x) =

{
g(x) if x 6= a
` if x = a.)

Solution: Recall that in class we proved: if g is cts at a and f is cts at g(a) then
f ◦ g is cts at a.

As the hint suggests, define

G(x) =

{
g(x) if x 6= a
` if x = a.
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We certainly have limx→aG(x) = limx→a g(x) (because G agrees with g away from
a), and since limx→a g(x) = ` and G(a) = ` we have limx→aG(x) = G(a), that is,
G is cts at a. We also have that f is cts at G(a) (since G(a) = `). So f ◦ G is cts
at a, i.e., limx→a f(G(x)) = f(G(a)). But f(G(a)) = f(`), and limx→a f(G(x)) =
limx→a f(g(x)) (since g agrees with G off a). So, as claimed,

lim
x→a

f(g(x)) = f(`).

(b) OPTIONAL! Show that if we do not assume continuity of f at `, then it is not
generally true that

lim
x→a

f(g(x)) = f(lim
x→a

g(x)).

Hint: Consider the function f defined by

f(x) =

{
0 if x 6= `
1 if x = `.

Solution (part b): Consider, as suggested, the function

f(x) =

{
0 if x 6= `
1 if x = `.

Certainly this function is not cts at `. In order to show that it not in general true
that

lim
x→a

f(g(x)) = f(lim
x→a

g(x))

if we don’t assume that f is cts at `, we will use the f defined above. We need to
find a function g such that

lim
x→a

g(x) = `, (1)

so that f(limx→a g(x)) = f(`) = 1, but that

lim
x→a

f(g(x)) 6= 1. (2)

We can achieve this by making g a cts function that takes the value ` at a (so that
(1) holds), but does not take the value a at any other input (so that f(g(x)) = 0 for
all x 6= a, and so limx→a f(g(x)) = 0, making (2) hold).

There are many such functions, for example g(x) = x− a+ `.

7. OPTIONAL! (but easy, hopefully. The first part came up in class on Friday before
break.)

(a) Prove that if f is continuous on [a, b] then there is a function g : R → R that is
continuous on all of R, and which satisfies g(x) = f(x) for all x ∈ [a, b]. (I.e., every
continuous function on a closed interval can be extended to a continuous function on
the reals). Hint: Don’t be too fancy with the definition of g to the left of a or to
the right of b — the obvious idea works. And again, you don’t need to use an ε-δ
argument; just know that you could, if needed.
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Solution: We have defined “cts on [a, b]” to mean: for all c ∈ (a, b), limx→c f(x) =
f(c), and also both of limx→a+ f(x) = f(a) and limx→b− f(x) = f(b).

Define

g(x) =


f(a) if x ≤ a
f(x) if a ≤ x ≤ b
f(b) if b ≤ x.

It is easy to check that g is continuous at every point in each of the intervals (−∞, a),
(b,∞) and (a, b). The latter is by hypothesis on f . For the two former, let’s argue
that for c < a, limx→c g(x) = g(c). Given ε > 0, let δ > 0 be any number small
enough that (c− δ, c + δ) ⊆ (−∞, a) (such a δ exists because c < a; δ = (a− c)/2
works). For all x in this interval, and so in particular for all x, 0 < |x− a| < δ, we
have g(x) = f(a) = g(c), so |g(x)− g(c)| = 0 < ε. This verifies limx→c g(x) = g(c);
continuity on (b,∞) is identical.

It remains to check that g is cts at a and b. We just look at a; the case of b is identical.
We know limx→a+ f(x) = f(a) so limx→a+ g(x) = g(a). Using a similar argument
to the previous paragraph, it is very easy to check that limx→a− g(x) = g(a). So
limx→a+ g(x) = limx→a− g(x) = g(a), and so limx→a g(x) = g(a), and g is cts at a.

(b) Show, by an example, that if f is only continuous on the open interval (a, b), then
such a g need not necessarily exist. NB: you just need to give a coherent explanation
of why your example works; an ε-δ proof is not required.

Solution: There are many examples that work here. Here is one. Define f(x) =
1/(x2 − 1) on the interval (−1, 1). This is continuous, but neither limx→−1+ f(x) nor
limx→1− f(x) exist (easy exercise, I won’t give the details). Now for f to be extended
to a function g that is cts on the whole real line, it is necessary for both limx→−1 g(x)
and limx→1 g(x) to exist, which requires limx→−1+ f(x) and limx→1− f(x) to exist. So
f can’t be extended to a function that is cts on the whole real line.

8. For each of the following polynomials, find (with justification!) an integer n such that
p(x) = 0 for some x ∈ (n, n+ 1), or prove that no such n exists.

(a) p(x) = x5 + 5x4 + 2x+ 1

Solution: p(−5) = −9 and p(−4) = 249 (found by a little trial-and-error), so by
the intermediate value theorem there is x ∈ (−5,−4) with p(x) = 0 (note that p is
continuous on [−5,−4]).

(b) q(x) = x5 + x+ 100

Solution: q(−3) = −146 and q(−2) = 66 (found by a little trial-and-error), so by
the intermediate value theorem there is x ∈ (−3,−2) with p(x) = 0 (note that q is
continuous on [−3,−2]).

(c) r(x) = x4 + 4x3 + 7x2 + 6x+ 3

Solution: Here a little trial-and-error suggests that r(x) > 0 for all integers. One
way to prove this is to observe:

r(x) = x4 + 4x3 + 7x2 + 6x+ 3 = (x+ 1)4 + x2 + 2x+ 2 = (x+ 1)4 + (x+ 1)2 + 1
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and since (x+ 1)4 ≥ 0, (x+ 1)2 ≥ 0 for all x ∈ R, we have r(x) ≥ 1 for all x ∈ R.

9. Suppose that f is a continuous function on [a, b] (some a < b), and that f only takes on
rational values. What can you conclude about f? Justify!

Solution: We can conclude that f is constant. For suppose not; then there are two
rational numbers r1 and r2 such that for some c, d, a ≤ c < d ≤ b, f(c) = r1 and f(d) = r2.
By the full-strength intermediate value theorem, in the interval [c, d] f takes on all values
between r1 and r2, and this includes some irrational numbers, contradicting the fact that
f only takes on rational values.

10. For this question, f : [0, 1] → [0, 1] is a continuous function on [0, 1] that only takes on
values between 0 and 1. Pictures will help for each part.

(a) Prove that there is a number x, 0 ≤ x ≤ 1, such that f(x) = x.

Solution: If f(0) = 0 or if f(1) = 1 then we are done, so we may assume that
f(0) > 0 and that f(1) < 1.

Consider the function defined by h(x) = f(x)− x, which is continuous on [0, 1]. We
have h(0) = f(0) − 0 > 0 and h(1) = f(1) − 1 < 0. So by the intermediate value
theorem there is x, 0 < x < 1 such that h(x) = 0. But for such an x we have
f(x)− x = 0, or f(x) = x.

(b) The previous part shows that f crosses the diagonal (0, 0) to (1, 1) of the unit square.
Show that it also crosses the other diagonal, the one from (0, 1) to (1, 0). That is,
show that there is an x, 0 ≤ x ≤ 1, such that (x, f(x)) lies on the line x+ y = 1.

Solution: If f(0) = 1 or if f(1) = 0 then we are done, so we may assume that
f(0) < 1 and that f(1) > 0.

Consider the function defined by h(x) = f(x)− (1− x), which is continuous on [0, 1].
We have h(0) = f(0) − 1 < 0 and h(1) = f(1) − 0 > 0. So by the intermediate
value theorem there is x, 0 < x < 1 such that h(x) = 0. But for such an x we have
f(x)− (1− x) = 0, or f(x) = 1− x, and so (x, f(x)) lies on the line x+ y = 1.

(c) More generally, prove that if g is continuous on [0, 1] with EITHER g(0) = 0 and
g(1) = 1 OR g(0) = 1 and g(1) = 0 then there is a number x, 0 ≤ x ≤ 1, such that
f(x) = g(x).

Solution: First consider the case g(0) = 0 and g(1) = 1. If either f(0) = 0 or
f(1) = 1 then we are done, so we may assume that f(0) > 0 and that f(1) < 1.

Consider the function defined by h(x) = f(x)− g(x), which is continuous on [0, 1].
We have h(0) = f(0)− g(0) > 0 and h(1) = f(1)− g(1) < 0. So by the intermediate
value theorem there is x, 0 < x < 1 such that h(x) = 0. But for such an x we have
f(x)− g(x) = 0, or f(x) = g(x).

Next consider the case g(0) = 1 and g(1) = 0. If either f(0) = 1 or f(1) = 0 then we
are done, so we may assume that f(0) < 1 and that f(1) > 0.

Consider the function defined by h(x) = f(x)− g(x), which is continuous on [0, 1].
We have h(0) = f(0)− g(0) < 0 and h(1) = f(1)− g(1) > 0. So by the intermediate
value theorem there is x, 0 < x < 1 such that h(x) = 0. But for such an x we have
f(x)− g(x) = 0, or f(x) = g(x).
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11. OPTIONAL! Let f be a continuous function on [a, b] with f(a) < 0 < f(b). We proved
the intermediate value theorem in class by showing that there is a smallest x in [a, b] with
f(x) = 0. If there is more than one x in [a, b] with f(x) = 0, is there necessarily a second
smallest?

Solution: Not necessarily. Consider a = −1, b = 2/π and f(x) defined piece-wise:

f(x) =

{
x if x ≤ 0

x sin(1/x) if x > 0.

This is continuous on [−1, 2/π], and satisfies f(a) < 0 < f(b). The smallest x in [a, b]
with f(x) = 0 is x = 0, and there are other inputs to the function that give output 0. But
there is no second-smallest such input; for any δ > 0 the interval (0, δ) contains infinitely
many numbers at which the function evaluates to 0.
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