Math 10850, Honors Calculus 1

Homework 8

Due in class Friday November 8

General and specific notes on the homework

All the notes from homework 1 still apply!

Reading for this homework

This homework covers the Extreme Value Theorem, and upper/lower bounds/functions bounded above/bounded below/completeness. You should read Section 3.7 and 3.8 (on upper/lower bounds/completeness/applications of completeness) and Section 7.4 (Extreme Value Theorem) of the class notes, and/or Spivak Chapter 7 and 8.

Assignment

1. (Note that this question is *not* about applying the Extreme Value Theorem; the given functions may or may not be continuous, and may or may not be defined on closed intervals.)

For each of the following functions

- (a) say whether they are bounded above, and/or below on the given interval, and
- (b) whether they achieve their maximum and/or minimum value on the given interval.

i.
$$f(x) = x^2$$
 on $(-1, 1)$.
ii. $f(x) = x^2$ on $[0, \infty)$
iii. $f(x) = \begin{cases} 0 & \text{if } x \text{ irrational} \\ 1/q & \text{if } x = p/q \text{ in lowest terms, } x \neq 0 & \text{on } [0, 1] \\ 0 & \text{if } x = 0 \end{cases}$
iv. $f(x) = \begin{cases} x & \text{if } x \text{ rational} \\ 0 & \text{if } x \text{ irrational} \\ 0 & \text{if } x \text{ irrational} \end{cases}$ on $[0, a]$. Here $a > 0$. The answer may depend on a , so you may need to treat cases.

- 2. For each the following sets
 - (a) find the least upper bound, and the greatest lower bound, if they exist. Note that the l.u.b. and the g.l.b. are *numbers*, so (at least for the purposes of this question) it is not legitimate to say, for example "sup $A = \infty$ ".

- (b) Also, in the cases where the l.u.b. and/or g.l.b. exists, say whether these values happen to belong to the sets in question.
 - i. $\left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ ii. $\left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0\}$ iii. $\{x : x^2 + x + 1 \ge 0\}$ iv. $\left\{\frac{1}{n} + (-1)^n : n \in \mathbb{N}\right\}$
- 3. **OPTIONAL!** (A little bit of history this was Archimedes' approach to estimating π)
 - (a) Suppose that a_1, a_2, \ldots is a sequence of positive numbers with $a_{n+1} \leq a_n/2$. Prove that for any $\varepsilon > 0$ there is some n with $a_n < \varepsilon$. (Here I don't want you to make an assertion like " $1/2^n$ can be made arbitrarily small, by making n sufficiently large", without a clear proof. You may assume the fact that we proved in class, that \mathbb{N} is unbounded.)
 - (b) Suppose P is a regular polygon, inscribed inside a circle. If P' is the inscribed regular polygon with twice as many sides as P, show that the quantity

area of circle
$$-$$
 area of P'

is less than half the quantity

area of circle - area of P

(see figure below, taken from Spivak Chapter 8).

(c) Show that for every $\varepsilon > 0$, it is possible to inscribe a regular polygon P into a circle, such that the quantity

area of circle - area of P

is less than ε .¹

¹Archimedes used this, called the "method of exhaustion", together with an analogous result for superscribed polygons, to show $223/71 < \pi < 22/7$.

- 4. Suppose that A and B are two non-empty sets of numbers such that $x \leq y$ for all $x \in A$ and all $y \in B$.
 - (a) Prove that $\sup A \leq y$ for all $y \in B$.
 - (b) Prove that $\sup A \leq \inf B$.
- 5. A number x is called an *almost upper bound* for A if there are only finitely many numbers $y \in A$ with $y \ge x$; and x is called an *almost lower bound* for A if there are only finitely many numbers $y \in A$ with $y \le x$.
 - (a) For each of these sets (that you have already considered in Question 2), find *all* almost upper bounds, and all almost lower bounds.
 - i. $\left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ ii. $\left\{x : x^2 + x + 1 \ge 0\right\}$ iii. $\left\{\frac{1}{n} + (-1)^n : n \in \mathbb{N}\right\}$
 - (b) Suppose that A is infinite, and bounded. Prove that the set B of all almost upper bounds of A is non-empty, and bounded from below.
 - (c) It follows from part (b) that $\inf B$ exists. This number is called the *limit superior* of A, and is denoted by $\limsup A$. For each of the following sets A that are bounded and infinite, find $\limsup A$.
 - i. $\left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ ii. $\{x : x^2 + x + 1 \ge 0\}$ iii. $\left\{\frac{1}{n} + (-1)^n : n \in \mathbb{N}\right\}$
 - (d) **OPTIONAL!** Define lim inf A, and find it for each of these A:
 - i. $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
 - ii. $\{x : x < 0 \text{ and } x^2 + x 1 < 0\}$
 - iii. $\left\{\frac{1}{n} + (-1)^n : n \in \mathbb{N}\right\}$
- 6. Remember that a *lower* bound for a set S is a number b such that for all x, if $x \in S$ then $b \leq x$, and a greatest lower bound is a lower bound c with the property that if b is any other lower bound, then $b \leq c$. If a set S has a greatest lower bound, then we write it as $\inf S$ ("infimum").

This question shows that the completeness axiom,

every non-empty set that has an upper bound, has a least upper bound, (\star)

implies the statement

every non-empty set that has a lower bound, has a greatest lower bound $(\star\star)$.

The same argument could be used in reverse to show that $(\star\star)$ implies (\star) , so that $(\star\star)$ is just an alternative form of the completeness axiom.

- (a) Suppose that S is non-empty and has some lower bound. Show that the set -S (meaning, $\{-s : s \in S\}$) is non-empty and has an upper bound.
- (b) Use part (a) and the completeness axiom to show that every non-empty set S that has a lower bound, has a greatest lower bound. Hint: Suppose $\alpha = \sup(-S)$. What is a good candidate for S?
- 7. For this question, $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ is a polynomial with leading coefficient 1 and with *n* even.
 - (a) Show that there is a number M such that if x > M, then $p(x) > a_0$, and if x < -M, then also $p(x) > a_0$.
 - (b) Prove that p(x) is bounded from below and achieves its minimum (i.e., prove that there is a number x_0 such $p(x_0) \le p(x)$ for all real x). Note: because the domain of p is all reals, and not just a closed interval in the reals, you cannot just instantly apply the Extreme Value Theorem to p. You need to use part (a) as well.

Extra credit problem

A two-part problem, possible quite hard:

1. (Easier) Suppose that $f: [0,1] \to \mathbb{R}$ is continuous, with f(0) = f(1). Let a = 1/n, where n is a natural number.

Prove that there is some number x such that f(x) = f(x + a). (The figure below, taken from Spivak Chapter 7, gives an illustration for n = 4.)

2. (Harder) For each number a in (0,1) that is *not* of the form 1/n for some natural number n, find a continuous function $f_a : [0,1] \to \mathbb{R}$ with $f_a(0) = f_a(1)$ but which there is no number x with $f_a(x) = f_a(x+a)$.