
Math 10850, Honors Calculus 1

Homework 8

Solutions

1. (Note that this question is not about applying the Extreme Value Theorem; the given
functions may or may not be continuous, and may or may not be defined on closed
intervals.)

For each of the following functions

(a) say whether they are bounded above, and/or below on the given interval, and

(b) whether they achieve their maximum and/or minimum value on the given interval.

i. f(x) = x2 on (−1, 1).

Solution:

• Bounded above (e.g. by 1),

• bounded below (e.g. by 0),

• does not take on maximum value (can make x2 arbitrarily close to 1 on
(−1, 1), but not equal 1),

• does take on minimum value 0 at x = 0.

ii. f(x) = x2 on [0,∞)

Solution:

• Not bounded above (can make x2 arbitrarily large by taking x arbitrarily
large),

• bounded below (e.g. by 0),

• does not take on maximum value (has no maximum value),

• does take on minimum value 0 at x = 0.

iii. f(x) =


0 if x irrational

1/q if x = p/q in lowest terms, x 6= 0
0 if x = 0

on [0, 1]

Solution:

• Bounded above (e.g. by 1),

• bounded below (e.g. by 0),

• does take on maximum value (e.g. at x = 1),

• does take on minimum value 0 (e.g. at x =
√

2− 1).
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iv. f(x) =

{
x if x rational
0 if x irrational

on [0, a]. Here a > 0. The answer may depend on

a, so you may need to treat cases.

Solution: First suppose that a is rational. Then the function

• is bounded above (e.g. by a),

• is bounded below (e.g. by 0),

• does take on maximum value (at x = a),

• does take on minimum value 0 (e.g. at 0).

Next, suppose that a is irrational. Then the function

• is bounded above (e.g. by a),

• is bounded below (e.g. by 0),

• does not take on maximum value (can make f arbitrarily close to a on [0, a]
by taking rational inputs arbitrarily close to a, but not equal a),

• does take on minimum value 0 (e.g. at 0).

2. For each the following sets

(a) find the least upper bound, and the greatest lower bound, if they exist. Note that
the l.u.b. and the g.l.b. are numbers, so (at least for the purposes of this question) it
is not legitimate to say, for example “supA =∞”.

(b) Also, in the cases where the l.u.b. and/or g.l.b. exists, say whether these values
happen to belong to the sets in question.

i.
{

1
n

: n ∈ N
}

Solution: L.u.b. is 1, and it is in the set. G.l.b. is 0, and it is not in the set.

ii.
{

1
n

: n ∈ N
}
∪ {0}

Solution: L.u.b. is 1, and it is in the set. G.l.b. is 0, and it is in the set.

iii. {x : x2 + x+ 1 ≥ 0}
Solution: A long time ago we proved that x2 + x+ 1 is always strictly positive
(one possible proof: it’s positive when x = 1. For x 6= 1 it is the same as
(x3 − 1)/(x − 1). For x > 1 this is positive divided by a positive, so positive,
and for x < 1 it is a negative divided by a negative, so positive). So the set in
question is R, which is neither bounded above nor below.

iv.
{

1
n

+ (−1)n : n ∈ N
}

Solution: This set includes the number 0, the negative numbers

−2/3,−4/5,−6/7,−8/9, . . .

and the positive numbers

3/2, 5/4, 7/6, 9/8, . . . .

L.u.b. is 3/2, and it is in the set. G.l.b. is −1, and it is not in the set.
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3. OPTIONAL! (A little bit of history — this was Archimedes’ approach to estimating π)

(a) Suppose that a1, a2, . . . is a sequence of positive numbers with an+1 ≤ an/2. Prove
that for any ε > 0 there is some n with an < ε. (Here I don’t want you to make an
assertion like “1/2n can be made arbitrarily small, by making n sufficiently large”,
without a clear proof. You may assume the fact that we proved in class, that N is
unbounded.)

Solution: By induction it is easy to prove that an ≤ a1/2
n−1 for all n. So it’s enough

to show that for all positive numbers a1 and for all ε > 0 there is an n such that
a1/2

n−1 < ε.

Suppose this were not the case for some a1, ε > 0. Then for all n ∈ N we would have
a1/2

n−1 ≥ ε or equivalently 2n−1 ≤ a1/ε.

Now we can prove by induction that for all n ≥ 1, we have n ≤ 2n−1 (base case is
easy; for induction step, by induction 2(n+1)−1 = 2 · 2n−1 ≥ 2n, so it is enough to
show that 2n ≥ n+ 1, which is certainly true for n ≥ 1).

So from 2n−1 ≤ a1/ε for all n ∈ N we conclude n ≤ a1/ε for all n ∈ N, which
contradicts the fact that N is unbounded.

(b) Suppose P is a regular polygon, inscribed inside a circle. If P ′ is the inscribed regular
polygon with twice as many sides as P , show that the quantity

area of circle − area of P ′

is less than half the quantity

area of circle − area of P

(see figure below, taken from Spivak Chapter 8).

Solution: Let’s say P is an n-gon.

Referring to the figure below marked Figure 7, augmented from Spivak: The difference
between the area of P and the area of the circle is n times the area of the circle cap
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EAC (the region bounded by the line segment EA and by the portion of the circle
from E to A that includes C); call this region A1, and let its area be a1, so εn = na1.

The difference between the area of P ′ and the area of the circle is 2n times the area
of the circle cap that is bounded by the line segment EC and by the portion of the
circle from E to C that lies inside 4ECD; call this region A2, and let its area be a2,
so εn+1 = 2na2.

We want to show that εn+1 ≤ εn/2, or equivalently that 2na2 ≤ na1/2, or equivalently
that 4a2 ≤ a1. For this it is enough to show that four disjoint regions can be found
inside A1, each of which has area a2. There is such a set of four regions:

• first, the region A2, which has area a2 by definition

• second, the circle cap that is bounded by the line segment AC and by the portion
of the circle from A to C that lies inside 4ACB; by symmetry this has area a2

• third, the triangle 4ECF is congruent to the triangle 4ECD, so a copy of A2

can be fitted inside 4ECF
• and fourth, the triangle 4CAF is congruent to the triangle 4CAB, so a copy

of A2 can be fitted inside 4CAF .

(c) Show that for every ε > 0, it is possible to inscribe a regular polygon P into a circle,
such that the quantity

area of circle − area of P

is less than ε.1

Solution: Start by inscribing a largest possible square P1 into the circle, and let a1
be the difference between the area of the circle and the area of the square. Form P2

1Archimedes used this, called the “method of exhaustion”, together with an analogous result for superscribed
polygons, to show 223/71 < π < 22/7.
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from P1 by the process described in part b), and let a2 be the difference between
the area of the circle and the area of P2. By the result of part b), a2 ≤ a1/2. In
general, form Pn+1 from Pn by the process described in part b), and let an+1 be the
difference between the area of the circle and the area of Pn. By the result of part b),
an+1 ≤ an/2.

Now given ε > 0, by the result of part a) there is an n large enough so that an < ε.
Pn is the required polygon.

4. Suppose that A and B are two non-empty sets of numbers such that x ≤ y for all x ∈ A
and all y ∈ B.

(a) Prove that supA ≤ y for all y ∈ B.

Solution: Given y ∈ B, by the condition x ≤ y for all x ∈ A we see that y is an
upper bound for A, so by definition of sup, y is at least as large as the supremum of
A, that is, supA ≤ y.

(b) Prove that supA ≤ inf B.

Solution: From part a), supA is a lower bound for B, so by definition of inf, supA
is at least as small as the infimum of B, that is, supA ≤ inf B.

5. A number x is called an almost upper bound for A if there are only finitely many numbers
y ∈ A with y ≥ x; and x is called an almost lower bound for A if there are only finitely
many numbers y ∈ A with y ≤ x.

(a) For each of these sets (that you have already considered in Question 2), find all
almost upper bounds, and all almost lower bounds.

i.
{

1
n

: n ∈ N
}

Solution: The set in question is {1, 1/2, 1/3, . . .}. Any number strictly greater
than 0 is an almost upper bound (and there are no other almost upper bounds).
Any number less than or equal to 0 is an almost lower bound (and there are no
other almost lower bounds).

ii. {x : x2 + x+ 1 ≥ 0}

Solution: The set in question is R, which has no almost upper bounds and no
almost lower bounds.

iii.
{

1
n

+ (−1)n : n ∈ N
}

Solution: The set in question consists of the sequence of positive numbers

3

2
,
5

4
,
7

6
, . . .

(decreasing, getting ever closer to 1), the sequence of negative numbers

−2

3
,
−4

5
,
−6

7
, . . .
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(decreasing, getting ever closer to −1), and also the number 0.
Any number strictly greater than 1 is an almost upper bound (and there are no
other almost upper bounds). Any number less than or equal to −1 is an almost
lower bound (and there are no other almost lower bounds).

(b) Suppose that A is infinite, and bounded. Prove that the set B of all almost upper
bounds of A is non-empty, and bounded from below.

Solution: Since A is bounded, it has at least one upper bound, and that is also an
almost upper bound, so the set B of almost upper bounds is non-empty.

Also since A is bounded, it has at least one lower bound, say `. Because A is infinite
there are infinitely many elements of A above `, so ` is not an almost upper bound,
and nor is any number below `, for the same reason. Hence ` is a lower bound for
the set of all almost upper bounds, and B is indeed bounded from below.

(c) It follows from part (b) that inf B exists. This number is called the limit superior of
A, and is denoted by lim supA. For each of the following sets A that are bounded
and infinite, find lim supA.

i.
{

1
n

: n ∈ N
}

Solution: lim supA = 0

ii. {x : x2 + x+ 1 ≥ 0}

Solution: lim supA does not exist, as set is not bounded from above.

iii.
{

1
n

+ (−1)n : n ∈ N
}

Solution: lim supA = 1

(d) OPTIONAL! Define lim inf A, and find it for each of these A:

i.
{

1
n

: n ∈ N
}

Solution: We define lim inf A to be the supremum of the set of all almost lower
bounds of A. By a very similar argument to that given earlier for lim sup, this
number exists for all infinite, bounded A.
For A =

{
1
n

: n ∈ N
}

, lim inf A = 0.

ii. {x : x < 0 and x2 + x− 1 < 0}

Solution: The set of x’s in question is the open interval from (−1−
√

5)/2 to 0.
The lim inf of this set is (−1−

√
5)/2.

iii.
{

1
n

+ (−1)n : n ∈ N
}

Solution: The lim inf of this set is −1.

6. Remember that a lower bound for a set S is a number b such that for all x, if x ∈ S then
b ≤ x, and a greatest lower bound is a lower bound c with the property that if b is any
other lower bound, then b ≤ c. If a set S has a greatest lower bound, then we write it as
infS (“infimum”).

This question shows that the completeness axiom,
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every non-empty set that has an upper bound, has a least upper bound, (?)

implies the statement

every non-empty set that has a lower bound, has a greatest lower bound (??).

The same argument could be used in reverse to show that (??) implies (?), so that (??) is
just an alternative form of the completeness axiom.

(a) Suppose that S is non-empty and has some lower bound. Show that the set −S
(meaning, {−s : s ∈ S}) is non-empty and has an upper bound.

Solution: Since S is non-empty, there is some s ∈ S. But then −s ∈ −S, so −S is
non-empty.

Let b be a lower bound for S. Then b ≤ x for all x ∈ S, so −b ≥ −x for all x ∈ S.
Since every element of −S is of the form −x for some x ∈ S, this shows that −b ≥ y
for all y ∈ −S, so −S has an upper bound.

(b) Use part (a) and the completeness axiom to show that every non-empty set S that
has a lower bound, has a greatest lower bound. Hint: Suppose α = sup(−S). What
is a good candidate for inf S?

Solution: If S is non-empty and has a lower bound, then by the previous part −S is
non-empty and has an upper bound, so by completeness −S has a least upper bound.
Call this α.

We claim that −α is a greatest lower bound for S. First, we show that it is a lower
bound. Suppose x ∈ S. Then −s ∈ −S, so −s ≤ α, so −α ≤ s. This shows that
indeed −α is a lower bound for S.

Next we show that −α is a greatest lower bound. Let β be a lower bound for S. Then
β ≤ x for all x ∈ S, so −x ≤ −β for all x ∈ S. Since every every element of −S is
of the form −x for some x ∈ S, this shows that −β is an upper bound for −S, so
−α ≤ −β, or β ≤ α. This shows that indeed −α is a greatest lower bound for S.

7. For this question, p(x) = xn + an−1x
n−1 + · · · + a1x + a0 is a polynomial with leading

coefficient 1 and with n even.

(a) Show that there is a number M such that if x > M , then p(x) > a0, and if x < −M ,
then also p(x) > a0.

Solution: If n = 0 then the result is automatic — p(x) is the constant function 1.
So we can assume n ≥ 2.

As long as |x| ≥ 1 (so |x|k ≤ |x|` for 1 ≤ k < `) we have

|an−1xn−1 + · · ·+ a1x+ a0| ≤ |an−1||x|n−1 + · · ·+ |a1||x|+ |a0|
< (|an−1|+ · · ·+ |a1|+ |a0|+ 1)|x|n−1

= L|x|n−1

where L = |an−1|+ · · ·+ |a1|+ |a0|+ 1.
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For x ≥ 1 we therefore have

p(x) > xn − Lxn−1 = xn−1(x− L).

We want to show that as long as x is large enough, this expression is at least a0. If
a0 ≤ 0, we can simply take x > L to get p(x) > 0 (note L ≥ 1). If a0 > 0, then take
x > max{L+ 1, a0 + 1} to get

p(x) > (a0 + 1)n−1 > a0

(the last equality following, for example, from the binomial theorem, and using n ≥ 2).
So, regardless of the value of a0, if x > max{L+ 1, a0 + 1} then p(x) > a0.

For x ≤ −1 we have

p(x) > xn − L|x|n−1 = xn + Lxn−1 = (−xn−1)(−x− L).

(Note −xn−1 is positive). We want to show that as long as x is negative enough, this
expression is at least a0. Let’s commit to choosing x < −L− 1, so −x− L > 1, so it
is enough to show −xn−1 > a0. If a0 ≤ 0, this is instant, since −xn−1 is positive. If
a0 > 0, then if we also commit to taking x < −a0 − 1 we have

−xn−1 = (a0 + 1)n−1 > a0,

as before. So we take x < min{−L− 1,−a0 − 1}.
In summary, M = max{L+ 1, a0 + 1} works.

(b) Prove that p(x) is bounded from below and achieves its minimum (i.e., prove that
there is a number x0 such p(x0) ≤ p(x) for all real x). Note: because the domain
of p is all reals, and not just a closed interval in the reals, you cannot just instantly
apply the Extreme Value Theorem to p. You need to use part (a) as well.

Solution: By the Extreme Value Theorem, there is a number x0 such that p(x0) ≤
p(x) for all x ∈ [−M,M ] (p is continuous on that closed interval).

In part a we found a number M such that for x in the intervals (M,∞) and (−∞,−M)
we have p(x) > a0 = p(0).

So for all real x, either x ∈ [−M,M ], in which case p(x0) ≤ p(x) directly from EVT,
or x ∈ (−∞,−M) ∪ (M,∞), in which case p(x0) ≥ p(0) > p(x) so p(x0) > p(x),
using part (a).
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