
Math 10850, Honors Calculus 1

Homework 9

Solutions

1. When we motivated the definition of derivative via instantaneous velocity, we got to the
expression limh→0

f(a+h)−f(a)
h

, and when we motivated it by slope of tangent line, we ended

up with limb→a
f(b)−f(a)

b−a . It seems intuitively clear that these two expressions are the same.
This question asks you to prove this, directly from the definition of limit. It also asks you
to show that the expression we got at the end of the proof that differentiability implies
continuity, namely limh→0 f(a+ h) = f(a), does indeed imply that f is continuous at a,
even though the expression looks a little bit different from the definition of continuity.

(a) Let g be a function defined near a. Suppose that limb→a g(b) exists and equals L.
Prove that limh→0 g(a+ h) exists and also equal L.1

Solution: Let ε > 0 be given. There is δ > 0 such that

0 < |b− a| < δ implies |g(b)− L| < ε. (?)

Now suppose 0 < |h| < δ (for the same δ). This says that 0 < |(a+ h)− a| < δ, so,
applying (?) (with b = a + h) we get that |g(a + h) − L| < ε, which is what was
required to prove that limh→0 g(a+ h) = L.

(b) OPTIONAL! (Almost exactly the same as part (a)) Let g be a function defined
near a. Suppose that limh→0 g(a + h) exists and equals L. Prove that limb→a g(b)
exists and also equal L.

Solution: Let ε > 0 be given. There is δ > 0 such that

0 < |h| < δ implies |g(a+ h)− L| < ε. (??)

Now suppose 0 < |b− a| < δ (for the same δ). Applying (??) (with h = b− a) we
get that |g(a+ (b− a))− L| < ε, or, equivalently, |g(b)− L| < ε, which is what was
required to prove that limb→a g(b) = L.

1You must use the ε-δ definition of the limit here. Start by supposing that an ε > 0 is given. You

• Know: that for any ε′ > 0 there is δ′ > 0 such that 0 < |b− a| < δ′ implies |g(b)− L| < ε′.

You

• Want: that there is δ > 0 such that 0 < |h| < δ implies |g(a+ h)− L| < ε.

Explain in your proof how to get where you want from what you know.
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(c) Parts (a) and (b) together show that if g is a function defined near a, then if one of
limh→0 g(a+h), limb→a g(b) exists, they both exist, and are equal. Apply this to show
that our two definitions of the derivative are equivalent. That is, show that if f is a
function defined at and near a, and if either one of limh→0

f(a+h)−f(a)
h

, limb→a
f(b)−f(a)

b−a
exists, then they both exist and are equal. (This should be a simple matter of finding
the right choice of function g).

Solution: For each, define the function g by

g(x) =
f(x)− f(a)

x− a
.

Note that

g(a+ h) =
f(a+ h)− f(a)

h
and g(b) =

f(b)− f(a)

b− a
We have that

• limh→0
f(a+h)−f(a)

h
exists and equals L

if and only if

• limh→0 g(a+ h) exists and equals L,

if and only if

• limb→a g(b) exists and equals L,

if and only if

• limb→a
f(b)−f(a)

b−a exists and equals L.

(d) OPTIONAL! (Very similar to part (c)). For f defined at and near a, we defined “f
continuous at a” to mean “limx→a f(x) = f(a)”. Show that an equivalent definition
is “limh→0 f(a+ h) = f(a)”.

Solution: This follows immediately from parts (a) and (b): just take g = f and
L = f(a).

2. Let f be defined by f(x) = x+1
x−1 . Directly from the definition2 calculate f ′(a) for each

a 6= 1.

2The definition involves a limit; you can assume any facts/theorems we have proven about limits and continuity.
This note also applies to the next question.
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Solution: For each a 6= 1 and h 6= 0 we have

f(a+ h)− f(a)

h
=

a+h+1
a+h−1 −

a+1
a−1

h

=
(a+ h+ 1)(a− 1)− (a+ 1)(a+ h− 1)

h(a+ h− 1)(a− 1)

=
a2 − a+ ah− h+ a− 1− (a2 + ah− a+ a+ h− 1)

h(a+ h− 1)(a− 1)

=
a2 + ah− h− 1− (a2 + ah+ h− 1)

h(a+ h− 1)(a− 1)

=
a2 + ah− h− 1− a2 − ah− h+ 1

h(a+ h− 1)(a− 1)

=
−2h

h(a+ h− 1)(a− 1)

=
−2

(a+ h− 1)(a− 1)
.

Since

lim
h→0

−2

(a+ h− 1)(x− 1)
=

−2

(a− 1)2

we get that

lim
h→0

f(a+ h)− f(a)

h
=

−2

(a− 1)2
,

so f is differentiable for all a 6= 1, with derivative

f ′(a) =
−2

(a− 1)2
.

3. (a) Prove, directly from the definition that if f3(x) = x1/3 then for all a 6= 0,

f ′3(a) =
1

3a2/3
.

(Here x2/3 is defined to be (x1/3)2. You may find the factorization of X3−Y 3 helpful.)
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Solution: Fix a 6= 0. We have f3(a+h)−f3(a)
h

=
(a+ h)1/3 − a1/3

h

=

(
(a+ h)1/3 − a1/3

h

)(
(a+ h)2/3 + (a+ h)1/3a1/3 + a2/3

(a+ h)2/3 + (a+ h)1/3a1/3 + a2/3

)
=

(
(a+ h)1/3 − a1/3

) (
(a+ h)2/3 + (a+ h)1/3a1/3 + a2/3

)
h ((a+ h)2/3 + (a+ h)1/3a1/3 + a2/3)

=

(
(a+ h)1/3

)3 − (a1/3)3
h ((a+ h)2/3 + (a+ h)1/3a1/3 + a2/3)

(using X3 − Y 3 = (X − Y )(X2 +XY + Y 2))

=
(a+ h)− a

h ((a+ h)2/3 + (a+ h)1/3a1/3 + a2/3)

=
h

h ((a+ h)2/3 + (a+ h)1/3a1/3 + a2/3)

=
1

(a+ h)2/3 + (a+ h)1/3a1/3 + a2/3
.

By continuity of the cube root function (and the sum-product-reciprocal theorem for
limits), this last expression tends to

1

3a2/3

as h tends to 0. This proves that

f ′3(a) =
1

3a2/3
.

(b) Is f3 differentiable at 0?

Solution: We have

f3(0 + h)− f3(0)

h
=

h1/3 − 0

h

=
1

h2/3
.

This does not tend to a limit as h approaches 0 (it grows arbitrarily large and positive
as h→ 0+ and arbitrarily large and negative as h→ 0−), so f ′3(0) does not exist.

(c) OPTIONAL! Let n ≥ 2 be a natural number, and let fn be defined by fn(x) = x1/n

(so the domain of fn is all reals if n is odd, and all non-negative reals if n is even).
Prove, directly from the definition, that

f ′n(a) =
1

na(n−1)/n

for all a 6= 0 (in the domain of fn), and that fn is not differentiable at 0 for any n.
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Solution: Using the factorization

Xn − Y n = (X − Y )(Xn−1 +Xn−2Y + · · ·+XY n−2 + Y n−1),

and following the same argument as in part (a), we find that for any a 6= 0 (and
a > 0 also, in the case n even)

fn(a+ h)− fn(a)

h
=

1

(a+ n)
n−1
n + (a+ n)

n−2
n a

1
n + · · ·+ (a+ n)

1
na

n−2
n + a

n−1
n

.

This latter approaches
1

na
n−1
n

as h approaches 0, so

f ′n(a) =
1

na(n−1)/n

for all a 6= 0 (in the domain of fn).

On the other hand, for odd n

fn(0 + h)− fn(0)

h
=

h1/n − 0

h

=
1

h
n−1
n

.

This does not tend to a limit as h approaches 0 (it grows arbitrarily large and positive
as h→ 0+ and arbitrarily large and negative as h→ 0−), so f ′n(0) does not exist.

For even n, we need to consider a one-sided limit: for h > 0

fn(0 + h)− fn(0)

h
=

h1/n − 0

h

=
1

h
n−1
n

.

This does not tend to a limit as h approaches 0 from above (it grows arbitrarily large
and positive), so for even n, (fn)′+(0) does not exist.

4. Find f ′ if f(x) = [x] (remember that [x] is the integer part of x: the greatest integer less
than or equal to x).

Solution: Let f(x) = [x] (domain: all reals). Let a be given. Suppose first that a is not
an integer. Then in some small interval around a, f(a) is constant, always taking the
value [a], and so

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

[a]− [a]

h
= lim

h→0
0 = 0,

so f ′(a) = 0.
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Now suppose a is an integer. Then for (small) h > 0, f(a+ h) = a = f(a) and for (small)
h < 0, f(a) = a− 1 6= f(a). So

lim
h→0+

f(a+ h)− f(a)

h
= lim

h→0+

a− a
h

= lim
h→0+

0 = 0,

while

lim
h→0−

f(a+ h)− f(a)

h
= lim

h→0−

(a− 1)− a
h

= lim
h→0−

−1

h
,

which does not exist. It follows that f is not differentiable at these a. So, in summary, f ′

is the function whose domain is all non-integer reals, that is constantly 0 on its domain.

5. Imagine a road on which the speed limit is specified at every single point. That is, there
is a certain function L such that the speed limit x miles from the beginning of the road is
L(x).

Two cars, A and B, are traveling along the road. A’s position at time t is a(t), and B’s is
b(t).

(a) What equation expresses the fact that A always travels at the speed limit? (Be
careful — question your first answer!)

Solution: The answer is not a′(t) = L(t)! The equation is a′(t) = L(a(t)) (A’s speed
at time t is the same as the speed limit at A’s position at time t, not the same as the
speed limit at time t).

(b) Suppose A always goes at the speed limit, and B’s position at time t is always A’s
position at time t− 1. Show that B is also going at the speed limit at all times.

Solution: Because A is always going at the speed limit, we have a′(t) = L(a(t)). We
also have b(t) = a(t− 1). Now this says that

b′(t) = a′(t− 1)3 = L(a(t− 1)) = L(b(t)),

which is exactly the equation that encodes that B is going at the speed limit at all
times.

(c) Suppose, instead, that B always stays a constant distance c behind A. Under what
conditions will B always be traveling at the speed limit?

3Why?

b′(t) = lim
h→0

b(t+ h)− b(t)
h

= lim
h→0

a(t+ h− 1)− a(t− 1)

h

= lim
h→0

a([t− 1] + h)− a([t− 1])

h

= a′(t− 1).

6



Solution: Again, we have that a′(t) = L(a(t)). But now the relation between
functions a and b is that there is some constant c > 0 such that b(t) + c = a(t), which
says that

b′(t) = a′(t) = L(a(t)) = L(b(t) + c).

Since the condition for B to always be going at the speed limit is b′(t) = L(b(t)), we
must have that L(b(t) + c) = L(b(t)) at all times. This says that the speed limit is
a periodic function, with period c (more correctly: with period c′ where c/c′ is an
integer).

Here’s a more intuitive way to think about it: Car A is being followed by Car B,
who is always c meters behind Car A. Car A is always going at the speed limit (at
Car A’s current location) and because Car B is a constant distance behind, Car B is
at all times going at the same speed as Car A. So the condition under which Car B
is always going at the speed limit is: the speed limit is the same at any two points
distance c meters apart. This condition is satisfied by the constant speed limit, but
also by any periodic speed limit whose period divides perfectly into c.

6. (a) Give an example of a function which is continuous at all reals, can be differentiated at
all reals, whose derivative is continuous at all reals, but which cannot be differentiated
twice at 0. (Hint: The function f defined by f(x) = |x| is not differentiable at 0).

Solution: Following the hint, if we could find a function which is continuous at all
reals, can be differentiated at all reals, and has derivative |x|, then we would be done.
Here is one such function:

f(x) =

{
x2

2
if x ≥ 0

−x2

2
if x ≤ 0.

For x > 0 we clearly have f ′(x) = x = |x|, and for x < 0 we have f ′(x) = −x = |x|.
We also easily get f ′+(0) = f ′−(0) = 0, so indeed f ′(x) = |x| for all x ∈ R.

(b) For each k ≥ 1, give an example of a function which is continuous at all reals, can be
differentiated k times at all reals, and whose kth derivative is continuous at all reals,
but which cannot be differentiated k + 1 times at 0.

Solution: There are many possibilities. Here’s one. Consider the function defined
by

f(x) =

{
xk+1 if x ≥ 0
−xk+1 if x ≤ 0

(notice that when k = 0 this is another way of writing f(x) = |x|; notice also that
there is no ambiguity at x = 0 since both clauses of the definition give the same
value).

Clearly f is continuous at all reals, and is differentiable infinitely often (not just k
times) at all reals other than perhaps at x = 0. At x = 0, the function is easily seen
to be k times. Indeed, using limit results that we have already calculated we can
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determine4 that for m ≤ k

f (m)(x) =

{
(k + 1)k(k − 1) · · · (k − (m− 2))xk−(m−1) if x ≥ 0
−(k + 1)k(k − 1) · · · (k − (m− 2))xk−(m−1) if x ≤ 0

In particular

f (k)(x) =

{
(k + 1)!x if x ≥ 0
−(k + 1)!x if x ≤ 0,

so in fact f (k)(x) = (k + 1)!|x|. As we have observed in the first part of this question,
this function is not differentiable at 0, so f cannot be differentiated k + 1 times at 0.

7. Recall that f (k) denotes the kth derivative of the function f , and that by convention f (0)

means f itself.

We have
(fg)(0) = fg = f (0)g(0),

(fg)(1) = (fg)′ = fg′ + f ′g = f (0)g(1) + f (1)g(0),

and

(fg)(2) = (fg)′′ = (fg′ + f ′g)′ = fg′′ + 2f ′g′ + f ′′g′′ = f (0)g(2) + 2f (1)g(1) + f (2)g(0).

There seems to be a pattern here:

(fg)(n) =
n∑

k=0

(SOME COEFFICIENT DEPENDING ON n and k) f (k)g(n−k).

Find the specific pattern, and prove that is correct for all n ≥ 0.

Solution: The pattern is

(fg)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k)

where
(
n
k

)
is the binomial coefficient, the same coefficient that appears in the expansion of

(x+ y)n.

We prove this by induction on n, with the base case n = 0 following from
(
0
0

)
= 1.

For the induction step, assume that for some n ≥ 0 we have

(fg)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k)

4Probably to be completely precise, this needs to be done by induction, but it’s ok not to give that level of
precision.
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and consider

(fg)(n+1) = (fg(n))′

=

(
n∑

k=0

(
n

k

)
f (k)g(n−k)

)′
(inductive hypothesis)

=
n∑

k=0

(
n

k

) (
f (k)g(n−k)

)′
(linearity of derivative)

=
n∑

k=0

(
n

k

) (
f (k)g(n−k+1) + f (k+1)g(n−k)

)
(product rule)

=
n∑

k=0

(
n

k

)
f (k)g(n−k+1) +

n∑
k=0

(
n

k

)
f (k+1)g(n−k)

=
n∑

k=0

(
n

k

)
f (k)g(n−k+1) +

n+1∑
k=1

(
n

k − 1

)
f (k)g(n−k+1) (shift of index)

= f (0)g(n−k+1) +
n∑

k=1

((
n

k

)
+

(
n

k − 1

))
f (k)g(n−k+1) + f (n+1)g(0) (

(
n

0

)
=

(
n

n

)
= 1)

= f (0)g(n−k+1) +
n∑

k=1

(
n+ 1

k

)
f (k)g(n−k+1) + f (n+1)g(0) (Pascal’s identity)

=
n+1∑
k=0

(
n+ 1

k

)
f (k)g(n+1−k) (

(
n+ 1

0

)
= 1,

(
n+ 1

n+ 1

)
= 1).

This completes a proof by induction of the identity.

8. This question will very likely require using the ε-δ definition of the limit.

(a) Define f as follows:

f(x) =

{
x2 if x is rational
0 if x is irrational.

Prove that f is differentiable at 0.

Solution: If h is rational then

f(0 + h)− f(0)

h
=
h2

h
= h

and if h is irrational then

f(0 + h)− f(0)

h
=

0

h
= 0.

We claim that
f(0 + h)− f(0)

h
→ 0 as h→ 0
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(which would show that f ′(0) = 0). Indeed, given ε > 0, if 0 < |h| < ε then
(f(0 +h)− f(0))/h either takes value h or 0, so |(f(0 +h)− f(0))/h| ≤ |h| < ε. This
shows, directly from the definition of limit, that limh→0(f(0 + h)− f(0))/h = 0 (we
are taking δ = ε in the definition).

(b) Let f be a function such that |f(x)| ≤ x2 for all x. Prove that f is differentiable at 0.

Solution: If |f(x)| ≤ x2 for all x then in particular f(0) = 0 and so∣∣∣∣f(0 + h)− f(0)

h

∣∣∣∣ =
|f(h)|
|h|

≤ h2

|h|
= |h|.

Reproducing a part of the proof from above we claim that

f(0 + h)− f(0)

h
→ 0 as h→ 0

(which would show that f ′(0) = 0). Indeed, given ε > 0, if 0 < |h| < ε then
|(f(0 +h)− f(0))/h| ≤ |h| < ε. This shows, directly from the definition of limit, that
limh→0(f(0 + h)− f(0))/h = 0 (we are taking δ = ε in the definition).

(c) OPTIONAL! Generalize part b): find a condition on a function g, such that you
can prove the following statement:

“Let f be a function such that |f(x)| ≤ |g(x)| for all x. Then f is differen-
tiable at 0.”

Your condition should be satisfied by the function g(x) = x2.

Solution: The most general condition that can be imposed is g(0) = g′(0) = 0
(which is certainly satisfied by g(x) = x2). Under these conditions, we claim that

f(0 + h)− f(0)

h
→ 0 as h→ 0

and so f ′(0) = 0. Indeed, if |f(x)| ≤ |g(x)| for all x and g(0) = 0 then in particular
f(0) = 0 and so ∣∣∣∣f(0 + h)− f(0)

h

∣∣∣∣ =
|f(h)|
|h|

≤ |g(h)|
|h|

.

Now since g is differentiable at 0 with derivative 0 it follows that

lim
h→0

g(0 + h)− g(0)

h
= lim

h→0

g(h)

h
= 0,

and so |g(h)|/|h| can be made arbitrarily small by choosing h small enough.

9. Prove that if f is an even function (one satisfying f(x) = f(−x) for all x) then f ′ is odd
(satisfies f ′(x) = −f ′(−x) for all x).

Solution: The quickest way to do this is via the chain rule. Let g(x) = f(−x) = (f ◦m)(x)
where m is the function that sends x to −x. By the chain rule g′(x) = f ′(m(x))m′(x) =
−f ′(−x). Now since f is even, we have also g(x) = f(x), so g′(x) = f ′(x). It follows that
f ′(x) = −f ′(−x), and so f ′ is odd.
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Since we don’t yet know the chain rule, we need a more direct proof. We have that

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

and

−f ′(−x) = − lim
h→0

f(−x+ h)− f(−x)

h
= − lim

h→0

f(x− h)− f(x)

h
= lim

h→0

f(x)− f(x− h)

h

(using in the second equality that f is even).

So we need to show

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x)− f(x− h)

h
.

Suppose limh→0
f(x+h)−f(x)

h
= L. Then given ε > 0 there is δ > 0 such that 0 < |h| < δ

implies ∣∣∣∣f(x+ h)− f(x)

h
− L

∣∣∣∣ < ε.

Now if h satisfies 0 < |h| < δ, then h ∈ (−δ, δ), and so also is −h, so, using∣∣∣∣f(x+ (−h))− f(x)

(−h)
− L

∣∣∣∣ =

∣∣∣∣f(x− h))− f(x)

−h
− L

∣∣∣∣ =

∣∣∣∣f(x)− f(x− h)

h
− L

∣∣∣∣
and ∣∣∣∣f(x+ (−h))− f(x)

(−h)
− L

∣∣∣∣ < ε

we know that ∣∣∣∣f(x)− f(x− h)

h
− L

∣∣∣∣ < ε.

This shows that limh→0
f(x)−f(x−h)

h
= L also.

A similar argument shows that if limh→0
f(x)−f(x−h)

h
= L then also limh→0

f(x+h)−f(x)
h

= L.
So the two limits are equal, as required.

10. (a) If f + g is differentiable at a, are f and g necessarily differentiable at a?

Solution: Not necessarily. Consider f(x) = |x| and g(x) = −|x|, neither of which
are differentiable at 0; but the sum f + g is identically 0, so is differentiable at 0.

(b) If both fg and f are differentiable at a, what conditions on f imply that g is
differentiable at a?

Solution: If f(a) 6= 0 then the quotient fg/f is differentiable at a (by the quotient
rule), so g is differentiable at a.

If f(a) = 0 then it is not certain that g is differentiable at a. Consider, for example,
g(x) = |x|, a = 0 and f(x) = 0.
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11. OPTIONAL! There are many ways to write the identity function I (defined by I(x) = x)
as a product fg of two differentiable functions — for example, f(x) = 3x and g(x) = 1/3.
Is it possible to write I = fg where f and g are both differentiable, and satisfy f(0) =
g(0) = 0?

Solution: We claim that it is not possible. For suppose it were and that I = fg is the
representation. Differentiating both sides, we obtain the identity 1 = fg′+f ′g. Evaluating
both sides at 0, we get 1 = f(0)g′(0) + f ′(0)g(0). But by hypothesis f(0) = g(0) = 0 and
so f(0)g′(0) + f ′(0)g(0) = 0, a contradiction.
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