Math 10850, Honors Calculus 1

Quiz 1, Thursday September 5
Solutions

1. Let $p(x, y)$ be the predicate " $x \cdot y=1$ ", where the universe of discourse for x is the natural numbers $\{1,2,3, \ldots\}$, the universe of discourse for y is the real numbers, and "." is ordinary multiplication. Which of the following statements is true, and which is false? For each one, briefly explain your reasoning.
(a) $(\forall x)(\forall y) p(x, y)$.

Solution: This is false. It asserts that for every natural number x and every real y, we have $x y=1$; but there are many examples of pairs x, y that don't work, e.g., $x=1$ and $y=\sqrt{\pi} / 5$.
(b) $(\forall x)(\exists y) p(x, y)$.

Solution: This is true. It asserts that for every natural number x there is a real y with $x y=1$ or $y=1 / x$. This is true since for each x we can take $1 / x$ as the value of y that works.
(c) $(\exists y)(\forall x) p(x, y)$.

Solution: This is false. If says that there is a special real number y, such that for every natural number x, $x y=1$. If y is different from 0 , this is clearly nonsense, as the value of $x y$ changes as x changes, so won't always be equal to 1 ; and if $y=0$ then $x y=0$ for all x and so is never equal to 1 . (Note that to completely answer this part, you do need to make some comment about the case $y=0$.)
2. We defined \Leftrightarrow in terms of \Rightarrow and \wedge, and we can express \Rightarrow as a combination of \vee and \neg. So:
(a) Write down an expression involving \wedge, \vee and \neg that is equivalent to $p \Leftrightarrow q$.

Solution: $p \Leftrightarrow q$ is equivalent to $(p \Rightarrow q) \wedge(q \Rightarrow p)$, and using that $A \Rightarrow B$ is equivalent to $\neg A \vee B$, this is equivalent to

$$
(\neg p \vee q) \wedge(\neg q \vee p)
$$

(b) Go further: write down an expression involving only \wedge and \neg that is equivalent to $p \Leftrightarrow q$.

Solution: From the last part, $p \Leftrightarrow q$ is equivalent to $(\neg p \vee q) \wedge(\neg q \vee p)$. One of De Morgan's laws says that $\neg(A \vee B)$ is equivalent to $\neg A \wedge \neg B$, so $A \vee B$ is equivalent to $\neg(\neg A \wedge \neg B)$. Using this on the result of the last part we get that $p \Leftrightarrow q$ is equivalent to

$$
\neg(p \wedge \neg q) \wedge \neg(q \wedge \neg p)
$$

