Math 10850, Honors Calculus 1

Quiz 1, Thursday September 5

Solutions

- 1. Let p(x, y) be the predicate " $x \cdot y = 1$ ", where the universe of discourse for x is the natural numbers $\{1, 2, 3, \ldots\}$, the universe of discourse for y is the real numbers, and " \cdot " is ordinary multiplication. Which of the following statements is true, and which is false? For each one, *briefly* explain your reasoning.
 - (a) $(\forall x)(\forall y)p(x,y)$.

Solution: This is false. It asserts that for every natural number x and every real y, we have xy = 1; but there are many examples of pairs x, y that don't work, e.g., x = 1 and $y = \sqrt{\pi}/5$.

(b) $(\forall x)(\exists y)p(x,y)$.

Solution: This is true. It asserts that for every natural number x there is a real y with xy = 1 or y = 1/x. This is true since for each x we can take 1/x as the value of y that works.

(c) $(\exists y)(\forall x)p(x,y).$

Solution: This is false. If says that there is a special real number y, such that for every natural number x, xy = 1. If y is different from 0, this is clearly nonsense, as the value of xy changes as x changes, so won't always be equal to 1; and if y = 0 then xy = 0 for all x and so is never equal to 1. (Note that to completely answer this part, you do need to make some comment about the case y = 0.)

- 2. We defined \Leftrightarrow in terms of \Rightarrow and \land , and we can express \Rightarrow as a combination of \lor and \neg . So:
 - (a) Write down an expression involving \land , \lor and \neg that is equivalent to $p \Leftrightarrow q$.

Solution: $p \Leftrightarrow q$ is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$, and using that $A \Rightarrow B$ is equivalent to $\neg A \lor B$, this is equivalent to

$$(\neg p \lor q) \land (\neg q \lor p).$$

(b) Go further: write down an expression involving *only* \land and \neg that is equivalent to $p \Leftrightarrow q$.

Solution: From the last part, $p \Leftrightarrow q$ is equivalent to $(\neg p \lor q) \land (\neg q \lor p)$. One of De Morgan's laws says that $\neg(A \lor B)$ is equivalent to $\neg A \land \neg B$, so $A \lor B$ is equivalent to $\neg(\neg A \land \neg B)$. Using this on the result of the last part we get that $p \Leftrightarrow q$ is equivalent to

$$\neg (p \land \neg q) \land \neg (q \land \neg p).$$