Math 10850, Honors Calculus 1

Quiz 2, Thursday September 12

Name:

1. Show that if a, x and y are real numbers satisfying $x+a=y+a$, then $x=y$. Use only the axioms of the real numbers, and the standard properties of equality; don't re-use anything that we proved in class. Say which axiom/axioms you are using at each step (the relevant ones appear overleaf to help you out).
2. Show that if a is any real number then $a \cdot 0=0$. Same rules apply as for part 1 , except you can also use the result of part 1, if you wish.
3. A consequence of part 1 is that the additive inverse of P 3 is unique. Using only the axioms of the real numbers, the standard properties of equality, and (if necessary) the uniqueness of inverses \& the result of part 2, prove that for all real $x,-x=(-1) x$. (NB: this has nothing to do with positivity, order, and/or P10 through P12.)

Axioms of the real numbers

The real numbers, denoted \mathbb{R}, is a set (of numbers) with

- two special numbers, 0 and 1 , that are distinct from each other,
- an operation + , addition, that combines numbers a, b to form the number $a+b$,
- an operation \cdot, multiplication, that combines a, b to form $a \cdot b$, and
- a set \mathbb{P} of positive numbers,
that satisfies the following 13 axioms:
P1, Additive associativity For all $a, b, c, a+(b+c)=(a+b)+c$.
P2, Additive identity For all $a, a+0=0+a=a$.
P3, Additive inverse For all a there's a number $-a$ with $a+(-a)=(-a)+a=0$.
P4, Additive commutativity For all $a, b, a+b=b+a$.
P5, Multiplicative associativity For all $a, b, c, a \cdot(b \cdot c)=(a \cdot b) \cdot c$.
P6, Multiplicative identity For all $a, a \cdot 1=1 \cdot a=a$.
P7, Multiplicative inverse For all a, if $a \neq 0$ there's a number a^{-1} such that $a \cdot a^{-1}=a^{-1} \cdot a=1$.
P8, Multiplicative commutativity For all $a, b, a \cdot b=b \cdot a$.
$\mathbf{P 9}$, Distributivity of multiplication over addition For all $a, b, c, a \cdot(b+c)=(a \cdot b)+(a \cdot c)$.
P10, Trichotomy law
P11, Closure under addition
P12, Closure under multiplication

P13, Completeness

