# Math 10850, Honors Calculus 1 

## Quiz 2, Thursday September 12

Solutions

1. Show that if $a, x$ and $y$ are real numbers satisfying $x+a=y+a$, then $x=y$. Use only the axioms of the real numbers, and the standard properties of equality; don't re-use anything that we proved in class. Say which axiom/axioms you are using at each step (the relevant ones appear overleaf to help you out).

Solution: Adding $-a$ (which exists by P3) to both sides of $x+a=y+a$ we get

$$
(x+a)+(-a)=(y+a)+(-a)
$$

By associativity of addition (P1) this implies

$$
x+(a+(-a))=y+(a+(-a)),
$$

which, by P3, implies

$$
x+0=y+0
$$

Finally using P2 this implies that $x=y$, as desired.
2. Show that if $a$ is any real number then $a \cdot 0=0$. Same rules apply as for part 1 , except you can also use the result of part 1, if you wish.

Solution: By P2, $0+0=0$. It follows that for any real $a, a \cdot(0+0)=a \cdot 0$. By P9, this implies that $a \cdot 0+a \cdot 0=a \cdot 0$. But now by P2 again we get $a \cdot 0+a \cdot 0=a \cdot 0+0$. From the previous part, it follows that $a \cdot 0=0$.
3. A consequence of part 1 is that the additive inverse of P3 is unique. Using only the axioms of the real numbers, the standard properties of equality, and (if necessary) the uniqueness of inverses \& the result of part 2 , prove that for all real $x,-x=(-1) x$. (NB: this has nothing to do with positivity, order, and/or P10 through P12.)

Solution: $-x$ is the additive inverse of $x$, that is, $x+(-x)=0$. If we could show that $x+(-1) x=0$ then (by P4, which implies that also $(-1) x+x=0$ ) this would show that $(-1) x$ is also an additive inverse of $x$, so by uniqueness of additive inverses, we conclude that $-x=-(1) x$.
To prove $x+(-1) x=0$, we proceed as follows:

$$
\begin{aligned}
x+(-1) x & =1 \cdot x+(-1) x \quad \text { (by P6) } \\
& =x \cdot 1+x \cdot(-1) \quad \text { (by P} 8) \\
& =x \cdot(1+(-1)) \quad \text { (by P} 9) \\
& =x \cdot 0 \quad \text { (by P3) } \\
& =0 \quad \text { (by previous part). }
\end{aligned}
$$

