Math 10850, Honors Calculus 1

Quiz 4, Thursday September 26

Solutions

1. State the principle of mathematical induction clearly and completely. I'll get things started for you: "Let $p(n)$ be a predicate, where the universe of discourse for n is \mathbb{N}...

Solution: If $p(1)$ is true, and if, for all $n \in \mathbb{N}, p(n)$ implies $p(n+1)$, then $p(n)$ is true for all $n \in \mathbb{N}$.
2. Let k be a fixed natural number. Prove (carefully, and with a neat \& clear layout) that for all $n \geq k$,

$$
\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
$$

Solution: We prove the identity by induction on n.
Base case, $n=k$: the identity asserts that $\binom{k}{k}=\binom{k+1}{k+1}$, which is true because both sides equal 1 .
Induction step: We assume that for some $n \geq k$, it holds that

$$
\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
$$

and we wish to use this to deduce that

$$
\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}+\binom{n+1}{k}=\binom{n+2}{k+1} .
$$

We have

$$
\begin{aligned}
\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}+\binom{n+1}{k} & =\left(\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}\right)+\binom{n+1}{k} \\
& =\binom{n+1}{k+1}+\binom{n+1}{k} \quad \text { (induction hypothesis) } \\
& =\binom{n+2}{k+1} \quad \text { (Pascal's identity) }
\end{aligned}
$$

as required.
By induction, the identity is true for all $n \geq k$.

