Math 10850, Honors Calculus 1

Quiz 4, Thursday September 26

Solutions

1. State the principle of mathematical induction *clearly* and *completely*. I'll get things started for you: "Let p(n) be a predicate, where the universe of discourse for n is \mathbb{N} ...

Solution: If p(1) is true, and if, for all $n \in \mathbb{N}$, p(n) implies p(n+1), then p(n) is true for all $n \in \mathbb{N}$.

2. Let k be a fixed natural number. Prove (carefully, and with a neat & clear layout) that for all $n \ge k$,

$$\binom{k}{k} + \binom{k+1}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}.$$

Solution: We prove the identity by induction on n.

Base case, n = k: the identity asserts that $\binom{k}{k} = \binom{k+1}{k+1}$, which is true because both sides equal 1.

Induction step: We assume that for some $n \ge k$, it holds that

$$\binom{k}{k} + \binom{k+1}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1},$$

and we wish to use this to deduce that

$$\binom{k}{k} + \binom{k+1}{k} + \dots + \binom{n}{k} + \binom{n+1}{k} = \binom{n+2}{k+1}$$

We have

$$\binom{k}{k} + \binom{k+1}{k} + \dots + \binom{n}{k} + \binom{n+1}{k} = \binom{k}{k} + \binom{k+1}{k} + \dots + \binom{n}{k} + \binom{n+1}{k} = \binom{n+1}{k+1} + \binom{n+1}{k} \quad \text{(induction hypothesis)} = \binom{n+2}{k+1} \quad \text{(Pascal's identity)},$$

as required.

By induction, the identity is true for all $n \ge k$.