Math 10850, Honors Calculus 1

Quiz 7, Thursday October 31

Solutions

1. Give a complete and correct statement of the Intermediate value theorem (IVT)

Solution: If $f : [a, b] \to \mathbb{R}$ is continuous (implicit in this: continuous at every point in the open interval (a, b), right continuous at a and left continuous at b, though all of this doesn't need to be said), and if f(a) < 0 and f(b) > 0, then there is $c \in (a, b)$ with f(c) = 0.

An alternative: if f is a continuous function defined on a closed interval, and f is negative at one end of the interval and positive at the other end of the interval, then there is some point in the interval where f is zero.

Another alternative: if f is a continuous function defined on an interval, and f takes on two different values, say x_1 and x_2 , then f takes on every value between x_1 and x_2 .

2. Use the intermediate value theorem to show that there is some real number c such that $c^5 = c + 1$. (You should use the theorem directly, and not use any consequences that we have derived from the theorem, such as facts about odd-degree polynomials).

Solution: One way to approach this question is to define the function $f(x) = x^5 - x - 1$. This is a continuous function on the closed interval [0,2]. We have f(0) = -1 < 0 and f(2) = 32 - 2 - 1 = 29 > 0. By the intermediate value theorem, there is $c \in (0,2)$ with f(c) = 0, i.e., with $c^5 - c - 1 = 0$, or $c^5 = c + 1$, as required.