Math 10850, Honors Calculus 1

Quiz 7, Thursday October 31

Solutions

1. Give a complete and correct statement of the Intermediate value theorem (IVT)

Solution: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous (implicit in this: continuous at every point in the open interval (a, b), right continuous at a and left continuous at b, though all of this doesn't need to be said), and if $f(a)<0$ and $f(b)>0$, then there is $c \in(a, b)$ with $f(c)=0$.
An alternative: if f is a continuous function defined on a closed interval, and f is negative at one end of the interval and positive at the other end of the interval, then there is some point in the interval where f is zero.
Another alternative: if f is a continuous function defined on an interval, and f takes on two different values, say x_{1} and x_{2}, then f takes on every value between x_{1} and x_{2}.
2. Use the intermediate value theorem to show that there is some real number c such that $c^{5}=c+1$. (You should use the theorem directly, and not use any consequences that we have derived from the theorem, such as facts about odd-degree polynomials).

Solution: One way to approach this question is to define the function $f(x)=x^{5}-x-1$. This is a continuous function on the closed interval $[0,2]$. We have $f(0)=-1<0$ and $f(2)=32-2-1=29>0$. By the intermediate value theorem, there is $c \in(0,2)$ with $f(c)=0$, i.e., with $c^{5}-c-1=0$, or $c^{5}=c+1$, as required.

