Math 10850, Honors Calculus 1

Quiz 8, Thursday November 14

Solutions

1. Using the definition of the derivative, show that the function f given by f(z) = H% is differentiable at
x =1, and find f'(1). (You may use familiar facts about limits, but nothing about the derivative except the
definition).

Solution: We have
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It follows that f’(1) exists and equals —1.

2. Show that if a function f is differentiable at a, then it must be that limy_,o f(a + h) = f(a) (i.e., that f is
continuous at a).

Solution: Here is a solution that goes into rather more detail than is probably needed.
Since f is differentiable at a,
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exists and equals some finite value f’(a). But also,
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exists and equals 0. So by the sum-product-reciprocal theorem for limits,
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It follows (by the sum-product-reciprocal theorem for limits) that

lim f(a+h) = Jm (f(a+h) ~ f(@)+ [(a)
= Jim (f(a+ )~ f(a) + im f(a)
= 0+ f(a) (f(a)a constant)

as required.



