Math 10850, Honors Calculus 1

Quiz 8, Thursday November 14

Solutions

1. Using the definition of the derivative, show that the function f given by $f(x)=\frac{2}{1+x^{2}}$ is differentiable at $x=1$, and find $f^{\prime}(1)$. (You may use familiar facts about limits, but nothing about the derivative except the definition).

Solution: We have

$$
\begin{aligned}
\frac{f(1+h)-f(1)}{h} & =\frac{\frac{2}{1+(1+h)^{2}}-\frac{2}{2}}{h} \\
& =\frac{2-\left(1+(1+h)^{2}\right)}{h\left(1+(1+h)^{2}\right)} \\
& =\frac{2-\left(2+2 h+h^{2}\right)}{h\left(1+(1+h)^{2}\right)} \\
& =\frac{-2 h-h^{2}}{h\left(1+(1+h)^{2}\right)} \\
& =\frac{-2-h}{1+(1+h)^{2}}
\end{aligned}
$$

If follows that

$$
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{-2-h}{1+(1+h)^{2}}=\frac{-2}{2}=-1
$$

It follows that $f^{\prime}(1)$ exists and equals -1 .
2. Show that if a function f is differentiable at a, then it must be that $\lim _{h \rightarrow 0} f(a+h)=f(a)$ (i.e., that f is continuous at a).

Solution: Here is a solution that goes into rather more detail than is probably needed.
Since f is differentiable at a,

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists and equals some finite value $f^{\prime}(a)$. But also,

$$
\lim _{h \rightarrow 0} h
$$

exists and equals 0 . So by the sum-product-reciprocal theorem for limits,

$$
\begin{aligned}
\lim _{h \rightarrow 0}(f(a+h)-f(a)) & =\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h}\right) h \\
& =\left(\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\right)\left(\lim _{h \rightarrow 0} h\right) \\
& =f^{\prime}(a) \cdot 0 \\
& =0
\end{aligned}
$$

It follows (by the sum-product-reciprocal theorem for limits) that

$$
\begin{aligned}
\lim _{h \rightarrow 0} f(a+h) & =\lim _{h \rightarrow 0}(f(a+h)-f(a))+f(a) \\
& =\lim _{h \rightarrow 0}(f(a+h)-f(a))+\lim _{h \rightarrow 0} f(a) \\
& =0+f(a) \quad(f(a) \text { a constant }) \\
& =f(a)
\end{aligned}
$$

as required.

