Math 10850, Honors Calculus 1

Quiz 9, Thursday December 5
Solutions

1. Give a clear and complete statement of the Mean Value Theorem.

Solution: If f is continuous on $[a, b]$ and differentiable on (a, b) then there is a number $c \in(a, b)$ with

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

2. This part concerns the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x^{3}+3 x^{2}+6 x-12$. Say that a real number c is a real root of f if $f(c)=0$.
(a) Show that f does not have two (or more) real roots.

Solution: Assume (for a contradiction) that there are real roots $a<b$. On the closed interval $[a, b], f$ is continuous, and it's differentiable on (a, b), so by the mean value theorem there is some number $c \in(a, b)$ with $f^{\prime}(c)=0$.
But $f^{\prime}(x)=6 x^{2}+6 x+6 x=6\left(x^{2}+x+1\right)$, and this is positive for all real $x\left(x^{2}+x+1=0\right.$ only when $x=(-1 \pm \sqrt{-3}) / 2$, neither of which are real numbers). So there is not a real c with $f^{\prime}(c)=0$.
This contradiction shows that f cannot have two real roots (or more).
One could also argue as follows: since $f^{\prime}(x)=6 x^{2}+6 x+6 x=6\left(x^{2}+x+1\right)$, and $6\left(x^{2}+x+1\right)>0$ for all real x, we have that f is strictly increasing on its whole domain. So if c is a real root, then for $d>c$ we have $f(d)>f(c)$ and so $f(d) \neq 0$, and for $c>e$ we have $f(c)>f(e)$ and so $f(e) \neq 0$. So f can have at most one real root.
(b) Show that f has exactly one real root.

Solution: We have shown that f can have at most one real root, so it remains to show that it has at least one real root.
Note that $f(0)=-12<0$ and $f(2)=28 . f$ is continuous on the closed interval [0,2], and goes from negative to positive on the interval; so by the Intermediate Value Theorem, there is $c \in(0,2)$ with $f(c)=0$. So f indeed has at least one real root.

