Math 10850, Honors Calculus 1

Quiz 9, Thursday December 5

Solutions

1. Give a clear and complete statement of the Mean Value Theorem.

Solution: If f is continuous on [a,b] and differentiable on (a,b) then there is a number $c \in (a,b)$ with

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

- 2. This part concerns the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = 2x^3 + 3x^2 + 6x 12$. Say that a real number c is a real root of f if f(c) = 0.
 - (a) Show that f does not have two (or more) real roots.

Solution: Assume (for a contradiction) that there are real roots a < b. On the closed interval [a, b], f is continuous, and it's differentiable on (a, b), so by the mean value theorem there is some number $c \in (a, b)$ with f'(c) = 0.

But $f'(x) = 6x^2 + 6x + 6x = 6(x^2 + x + 1)$, and this is positive for all real x ($x^2 + x + 1 = 0$ only when $x = (-1 \pm \sqrt{-3})/2$, neither of which are real numbers). So there is not a real c with f'(c) = 0.

This contradiction shows that f cannot have two real roots (or more).

One could also argue as follows: since $f'(x) = 6x^2 + 6x + 6x = 6(x^2 + x + 1)$, and $6(x^2 + x + 1) > 0$ for all real x, we have that f is strictly increasing on its whole domain. So if c is a real root, then for d > c we have f(d) > f(c) and so $f(d) \neq 0$, and for c > e we have f(c) > f(e) and so $f(e) \neq 0$. So f can have at most one real root.

(b) Show that f has exactly one real root.

Solution: We have shown that f can have at most one real root, so it remains to show that it has at least one real root.

Note that f(0) = -12 < 0 and f(2) = 28. f is continuous on the closed interval [0, 2], and goes from negative to positive on the interval; so by the Intermediate Value Theorem, there is $c \in (0, 2)$ with f(c) = 0. So f indeed has at least one real root.