Math 10850 - Honors calculus I

Fall 2019

Department of Mathematics, University of Notre Dame
December 5, 2019

Open problem Friday, Aug 30 - Goldbach's Conjecture

Every even number greater than 2 can be written as the sum of two prime numbers (e.g., $110=51+59$)

Open problem Friday, Aug 30 - Goldbach's Conjecture

Every even number greater than 2 can be written as the sum of two prime numbers (e.g., $110=51+59$)

- 277 years old! Conjectured by Christian Goldbach in letter to Leonhard Euler in 1742

Open problem Friday, Aug 30 - Goldbach's Conjecture

Every even number greater than 2 can be written as the sum of two prime numbers (e.g., $110=51+59$)

- 277 years old! Conjectured by Christian Goldbach in letter to Leonhard Euler in 1742
- Verified up to 4×10^{18} (Tomás Oliveira e Silva, 2017)

Open problem Friday, Aug 30 - Goldbach's Conjecture

Every even number greater than 2 can be written as the sum of two prime numbers (e.g., $110=51+59$)

- 277 years old! Conjectured by Christian Goldbach in letter to Leonhard Euler in 1742
- Verified up to 4×10^{18} (Tomás Oliveira e Silva, 2017)
- Every odd number after 5 is sum of three prime numbers (Harald Helfgott, 2015) (also conjectured by Goldbach; his two-primes conjecture implies this, but this doesn't [obviously] imply his two-primes conjecture)

Open problem Friday, Aug 30 - Goldbach's Conjecture

Every even number greater than 2 can be written as the sum of two prime numbers (e.g., $110=51+59$)

- 277 years old! Conjectured by Christian Goldbach in letter to Leonhard Euler in 1742
- Verified up to 4×10^{18} (Tomás Oliveira e Silva, 2017)
- Every odd number after 5 is sum of three prime numbers (Harald Helfgott, 2015) (also conjectured by Goldbach; his two-primes conjecture implies this, but this doesn't [obviously] imply his two-primes conjecture)
- There is a number C such that every even number is the sum of at most C prime numbers:

Open problem Friday, Aug 30 - Goldbach's Conjecture

Every even number greater than 2 can be written as the sum of two prime numbers (e.g., $110=51+59$)

- 277 years old! Conjectured by Christian Goldbach in letter to Leonhard Euler in 1742
- Verified up to 4×10^{18} (Tomás Oliveira e Silva, 2017)
- Every odd number after 5 is sum of three prime numbers (Harald Helfgott, 2015) (also conjectured by Goldbach; his two-primes conjecture implies this, but this doesn't [obviously] imply his two-primes conjecture)
- There is a number C such that every even number is the sum of at most C prime numbers:
- $C=800,000$ works (Lev Schnirelmann, 1930)

Open problem Friday, Aug 30 - Goldbach's Conjecture

Every even number greater than 2 can be written as the sum of two prime numbers (e.g., $110=51+59$)

- 277 years old! Conjectured by Christian Goldbach in letter to Leonhard Euler in 1742
- Verified up to 4×10^{18} (Tomás Oliveira e Silva, 2017)
- Every odd number after 5 is sum of three prime numbers (Harald Helfgott, 2015) (also conjectured by Goldbach; his two-primes conjecture implies this, but this doesn't [obviously] imply his two-primes conjecture)
- There is a number C such that every even number is the sum of at most C prime numbers:
- $C=800,000$ works (Lev Schnirelmann, 1930)
- $C=4$ works (Harald Helfgott, 2015)

Open problem Friday, Aug 30 - Goldbach's Conjecture

Every even number greater than 2 can be written as the sum of two prime numbers (e.g., $110=51+59$)

- 277 years old! Conjectured by Christian Goldbach in letter to Leonhard Euler in 1742
- Verified up to 4×10^{18} (Tomás Oliveira e Silva, 2017)
- Every odd number after 5 is sum of three prime numbers (Harald Helfgott, 2015) (also conjectured by Goldbach; his two-primes conjecture implies this, but this doesn't [obviously] imply his two-primes conjecture)
- There is a number C such that every even number is the sum of at most C prime numbers:
- $C=800,000$ works (Lev Schnirelmann, 1930)
- $C=4$ works (Harald Helfgott, 2015)
- Every large enough even number is the sum of a prime and either a prime or a product of two primes (Chen Jingrun, 1973)

Open prob Fri Sept 6 - Zarankiewicz's Conjecture

The utilities problem: can three houses each be connected to three utilities buildings, in such a way that none of the nine connections cross?

Open prob Fri Sept 6 - Zarankiewicz's Conjecture

The utilities problem: can three houses each be connected to three utilities buildings, in such a way that none of the nine connections cross?

How does the middle house get gas?

Open prob Fri Sept 6 - Zarankiewicz's Conjecture

The utilities problem: can three houses each be connected to three utilities buildings, in such a way that none of the nine connections cross?

How does the middle house get gas?
If there are m houses and n utilities buildings, Zarankiewicz (1954) found a layout where among the $m n$ connections the number of crossings is

$$
\left[\frac{n}{2}\right]\left[\frac{n-1}{2}\right]\left[\frac{m}{2}\right]\left[\frac{m-1}{2}\right]
$$

(picture: https://tinyurl.com/y2ptzvvt, history of problem: https://tinyurl.com/y4w5cywf)

Open prob Fri Sept 6 - Zarankiewicz's Conjecture

The utilities problem: can three houses each be connected to three utilities buildings, in such a way that none of the nine connections cross?

How does the middle house get gas?
If there are m houses and n utilities buildings, Zarankiewicz (1954) found a layout where among the $m n$ connections the number of crossings is

$$
\left[\frac{n}{2}\right]\left[\frac{n-1}{2}\right]\left[\frac{m}{2}\right]\left[\frac{m-1}{2}\right]
$$

(picture: https://tinyurl.com/y2ptzvvt, history of problem: https://tinyurl.com/y4w5cywf)
Is this the best possible?

Open prob Fri Sept 6 - Zarankiewicz's Conjecture

The utilities problem: can three houses each be connected to three utilities buildings, in such a way that none of the nine connections cross?

How does the middle house get gas?
If there are m houses and n utilities buildings, Zarankiewicz (1954) found a layout where among the $m n$ connections the number of crossings is

$$
\left[\frac{n}{2}\right]\left[\frac{n-1}{2}\right]\left[\frac{m}{2}\right]\left[\frac{m-1}{2}\right]
$$

(picture: https://tinyurl.com/y2ptzvvt, history of problem: https://tinyurl.com/y4w5cywf)
Is this the best possible?
Smallest open cases: $m=9, n=9$ and $m=7, n=11$.

Open problem Fri. Nov. 1 - The square peg problem

Does every closed curve in the plane have four points that form the corners of a square?

Open problem Fri. Nov. 1 - The square peg problem

Does every closed curve in the plane have four points that form the corners of a square?
https://en.wikipedia.org/wiki/Inscribed_square_problem

Open problem Fri. Nov. 1 - The square peg problem

Does every closed curve in the plane have four points that form the corners of a square?
https://en.wikipedia.org/wiki/Inscribed_square_problem

- Asked by Otto Toepliz in 1911

Open problem Fri. Nov. 1 - The square peg problem

Does every closed curve in the plane have four points that form the corners of a square?
https://en.wikipedia.org/wiki/Inscribed_square_problem

- Asked by Otto Toepliz in 1911
- Known from some special curves (polygons, smooth curves)

Open problem Fri. Nov. 1 - The square peg problem

Does every closed curve in the plane have four points that form the corners of a square?
https://en.wikipedia.org/wiki/Inscribed_square_problem

- Asked by Otto Toepliz in 1911
- Known from some special curves (polygons, smooth curves)
- "Most" curves have only one square (e.g., obtuse triangles)

Open problem Fri. Nov. 1 - The square peg problem

Does every closed curve in the plane have four points that form the corners of a square?

```
https://en.wikipedia.org/wiki/Inscribed_square_problem
```

- Asked by Otto Toepliz in 1911
- Known from some special curves (polygons, smooth curves)
- "Most" curves have only one square (e.g., obtuse triangles)
- Related problem: fix $r \geq 1$. Does every smooth closed curve in the plane have four points that form the corners of a rectangle with aspect ratio $r: 1$?

Open problem Fri. Nov. 1 - The square peg problem

Does every closed curve in the plane have four points that form the corners of a square?

```
https://en.wikipedia.org/wiki/Inscribed_square_problem
```

- Asked by Otto Toepliz in 1911
- Known from some special curves (polygons, smooth curves)
- "Most" curves have only one square (e.g., obtuse triangles)
- Related problem: fix $r \geq 1$. Does every smooth closed curve in the plane have four points that form the corners of a rectangle with aspect ratio $r: 1$?
- Known only for $r=1$

Open prob Fri Sept 21 - The Collatz/3x+1 problem Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$

Open prob Fri Sept 21 - The Collatz/3x+1 problem

Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$
Starting from x, keep iterating $f: x, f(x), f(f(x)), f(f(f(x))), \ldots$ (this is example of a dynamical system)

Open prob Fri Sept 21 - The Collatz/3x+1 problem

Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$
Starting from x, keep iterating $f: x, f(x), f(f(x)), f(f(f(x))), \ldots$ (this is example of a dynamical system)

$$
8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots
$$

Open prob Fri Sept 21 - The Collatz/3x+1 problem

 Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$Starting from x, keep iterating $f: x, f(x), f(f(x)), f(f(f(x))), \ldots$ (this is example of a dynamical system)

$$
8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots
$$

$$
13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots
$$

Open prob Fri Sept 21 - The Collatz/3x+1 problem

 Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$ Starting from x, keep iterating $f: x, f(x), f(f(x)), f(f(f(x))), \ldots$ (this is example of a dynamical system)$$
8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \ldots
$$

$$
13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots
$$

$$
9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow \cdots \rightarrow 1
$$

Open prob Fri Sept 21 - The Collatz/3x+1 problem

 Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$Starting from x, keep iterating $f: x, f(x), f(f(x)), f(f(f(x))), \ldots$ (this is example of a dynamical system)

$$
8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \ldots
$$

$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots$
$9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow \cdots \rightarrow 1$
Does the sequence always get to $4 \rightarrow 2 \rightarrow 1 \cdots$?

Open prob Fri Sept 21 - The Collatz/3x+1 problem

 Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$ Starting from x, keep iterating $f: x, f(x), f(f(x)), f(f(f(x))), \ldots$ (this is example of a dynamical system)$$
8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \ldots
$$

$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots$ $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow \cdots \rightarrow 1$

Does the sequence always get to $4 \rightarrow 2 \rightarrow 1 \cdots$?

- Asked by Lothar Collatz in 1937

Open prob Fri Sept 21 - The Collatz/3x+1 problem

 Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$Starting from x, keep iterating $f: x, f(x), f(f(x)), f(f(f(x))), \ldots$ (this is example of a dynamical system)

$$
8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots
$$

$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots$
$9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow \cdots \rightarrow 1$
Does the sequence always get to $4 \rightarrow 2 \rightarrow 1 \cdots$?

- Asked by Lothar Collatz in 1937
- 27 needs 111 steps! (https://oeis.org/A008884/b008884.txt)

Open prob Fri Sept 21 - The Collatz/3x+1 problem

 Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$ Starting from x, keep iterating $f: x, f(x), f(f(x)), f(f(f(x))), \ldots$ (this is example of a dynamical system)$$
8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots
$$

$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots$
$9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow \cdots \rightarrow 1$
Does the sequence always get to $4 \rightarrow 2 \rightarrow 1 \cdots$?

- Asked by Lothar Collatz in 1937
- 27 needs 111 steps! (https://oeis.org/A008884/b008884.txt)
- Known for all starting x up to 10^{20}

Open prob Fri Sept 21 - The Collatz/3x+1 problem

Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(x)=\left\{\begin{array}{cc}3 x+1 & \text { if } x \text { odd } \\ x / 2 & \text { if } x \text { even. }\end{array}\right.$
Starting from x, keep iterating $f: x, f(x), f(f(x)), f(f(f(x))), \ldots$ (this is example of a dynamical system)

$$
8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots
$$

$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots$
$9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow \cdots \rightarrow 1$
Does the sequence always get to $4 \rightarrow 2 \rightarrow 1 \cdots$?

- Asked by Lothar Collatz in 1937
- 27 needs 111 steps! (https://oeis.org/A008884/b008884.txt)
- Known for all starting x up to 10^{20}
- Erdős (\$500): "Mathematics may not be ready for such problems"

Open prob Fri Nov 15 - Singmaster's question

"1" appears infinitely often in Pascal's triangle

Open prob Fri Nov 15 - Singmaster's question

"1" appears infinitely often in Pascal's triangle
" 2 " appears exactly once; no other number does

Open prob Fri Nov 15 - Singmaster's question

"1" appears infinitely often in Pascal's triangle
"2" appears exactly once; no other number does
∞ ly many numbers appear exactly twice - $3,4,5,7,8,9,11, \ldots$

Open prob Fri Nov 15 - Singmaster's question

" 1 " appears infinitely often in Pascal's triangle
"2" appears exactly once; no other number does
∞ ly many numbers appear exactly twice - $3,4,5,7,8,9,11, \ldots$ ∞ ly many appear exactly three times - $6,20,70, \ldots$

Open prob Fri Nov 15 - Singmaster's question

" 1 " appears infinitely often in Pascal's triangle
" 2 " appears exactly once; no other number does
∞ ly many numbers appear exactly twice - $3,4,5,7,8,9,11, \ldots$ ∞ ly many appear exactly three times - $6,20,70, \ldots$ ∞ ly many appear exactly four times - $10,15,35, \ldots$

Open prob Fri Nov 15 - Singmaster's question

" 1 " appears infinitely often in Pascal's triangle
" 2 " appears exactly once; no other number does
∞ ly many numbers appear exactly twice - $3,4,5,7,8,9,11, \ldots$
∞ ly many appear exactly three times - $6,20,70, \ldots$
∞ ly many appear exactly four times - $10,15,35, \ldots$
∞ ly many appear exactly six times - 120 is smallest (Singmaster, 1971)

Open prob Fri Nov 15 - Singmaster's question

" 1 " appears infinitely often in Pascal's triangle
" 2 " appears exactly once; no other number does
∞ ly many numbers appear exactly twice - $3,4,5,7,8,9,11, \ldots$
∞ ly many appear exactly three times - $6,20,70, \ldots$
∞ ly many appear exactly four times - $10,15,35, \ldots$
∞ ly many appear exactly six times - 120 is smallest (Singmaster, 1971) 3003 appears exactly eight times:
$\binom{3003}{1}=\binom{78}{2}=\binom{15}{5}=\binom{14}{6}=\binom{14}{8}=\binom{15}{10}=\binom{78}{76}=\binom{3003}{3002}$

Open prob Fri Nov 15 - Singmaster's question

" 1 " appears infinitely often in Pascal's triangle
" 2 " appears exactly once; no other number does
∞ ly many numbers appear exactly twice - $3,4,5,7,8,9,11, \ldots$
∞ ly many appear exactly three times - $6,20,70, \ldots$
∞ ly many appear exactly four times - $10,15,35, \ldots$
∞ ly many appear exactly six times - 120 is smallest (Singmaster, 1971) 3003 appears exactly eight times:
$\binom{3003}{1}=\binom{78}{2}=\binom{15}{5}=\binom{14}{6}=\binom{14}{8}=\binom{15}{10}=\binom{78}{76}=\binom{3003}{3002}$

Does any other number appear exactly eight times?

Open prob Fri Nov 15 - Singmaster's question

" 1 " appears infinitely often in Pascal's triangle
" 2 " appears exactly once; no other number does
∞ ly many numbers appear exactly twice - $3,4,5,7,8,9,11, \ldots$
∞ ly many appear exactly three times - $6,20,70, \ldots$
∞ ly many appear exactly four times - $10,15,35, \ldots$
∞ ly many appear exactly six times - 120 is smallest (Singmaster, 1971) 3003 appears exactly eight times:
$\binom{3003}{1}=\binom{78}{2}=\binom{15}{5}=\binom{14}{6}=\binom{14}{8}=\binom{15}{10}=\binom{78}{76}=\binom{3003}{3002}$

Does any other number appear exactly eight times?
Does any number appear more than eight times?

Open prob Fri Nov 15 - Singmaster's question

" 1 " appears infinitely often in Pascal's triangle
" 2 " appears exactly once; no other number does
∞ ly many numbers appear exactly twice - $3,4,5,7,8,9,11, \ldots$
∞ ly many appear exactly three times - $6,20,70, \ldots$
∞ ly many appear exactly four times - $10,15,35, \ldots$
∞ ly many appear exactly six times - 120 is smallest (Singmaster, 1971) 3003 appears exactly eight times:
$\binom{3003}{1}=\binom{78}{2}=\binom{15}{5}=\binom{14}{6}=\binom{14}{8}=\binom{15}{10}=\binom{78}{76}=\binom{3003}{3002}$

Does any other number appear exactly eight times?
Does any number appear more than eight times?
Does any number appear exactly five, or seven, times?

Open problem Friday December 6 - Perfect numbers

 $n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself
Open problem Friday December 6 - Perfect numbers

$n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself

- $\mathbf{6}=1+2+3$

Open problem Friday December 6 - Perfect numbers

$n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself

- $\mathbf{6}=1+2+3$
- $\mathbf{2 8}=1+2+4+7+14$

Open problem Friday December 6 - Perfect numbers

$n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself

- $\mathbf{6}=1+2+3$
- $28=1+2+4+7+14$
- $18 \neq 1+2+3+6+9(=21)$

Open problem Friday December 6 - Perfect numbers

$n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself

- $\mathbf{6}=1+2+3$
- $28=1+2+4+7+14$
- $18 \neq 1+2+3+6+9(=21)$

Are there infinitely many perfect numbers?

Open problem Friday December 6 - Perfect numbers

$n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself

- $\mathbf{6}=1+2+3$
- $28=1+2+4+7+14$
- $18 \neq 1+2+3+6+9(=21)$

Are there infinitely many perfect numbers?
Theorem (Euclid, Euler): If n is even, then
n is perfect if and only if $n=2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime

Open problem Friday December 6 - Perfect numbers

$n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself

- $\mathbf{6}=1+2+3$
- $28=1+2+4+7+14$
- $18 \neq 1+2+3+6+9(=21)$

Are there infinitely many perfect numbers?
Theorem (Euclid, Euler): If n is even, then
n is perfect if and only if $n=2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime

Are there infinitely many Mersenne primes - primes of the form $2^{p}-1$?

Open problem Friday December 6 - Perfect numbers

$n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself

- $\mathbf{6}=1+2+3$
- $28=1+2+4+7+14$
- $18 \neq 1+2+3+6+9(=21)$

Are there infinitely many perfect numbers?
Theorem (Euclid, Euler): If n is even, then
n is perfect if and only if $n=2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime

Are there infinitely many Mersenne primes - primes of the form $2^{p}-1$?
51 are known; largest is $2^{82589} 933-1$ (24.8 million digits)

Open problem Friday December 6 - Perfect numbers

$n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself

- $\mathbf{6}=1+2+3$
- $28=1+2+4+7+14$
- $18 \neq 1+2+3+6+9(=21)$

Are there infinitely many perfect numbers?
Theorem (Euclid, Euler): If n is even, then
n is perfect if and only if $n=2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime

Are there infinitely many Mersenne primes - primes of the form $2^{p}-1$?
51 are known; largest is $2^{82589} 933-1$ (24.8 million digits)
Are there any odd perfect numbers?

Open problem Friday December 6 - Perfect numbers

$n \in \mathbb{N}$ is perfect if it equals the sum of its divisors, not including itself

- $\mathbf{6}=1+2+3$
- $28=1+2+4+7+14$
- $18 \neq 1+2+3+6+9(=21)$

Are there infinitely many perfect numbers?
Theorem (Euclid, Euler): If n is even, then
n is perfect if and only if $n=2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime

Are there infinitely many Mersenne primes - primes of the form $2^{p}-1$?
51 are known; largest is $2^{82589} 933-1$ (24.8 million digits)
Are there any odd perfect numbers?
Smallest would be at least 10^{1500}

