B.H. Brown's amazing theorem - in honor of Friday September 132019

Question: Pick a random day from a random year. If it turns out to be the 13th of some month, what day of the week is it most likely to be?

B.H. Brown's amazing theorem - in honor of Friday September 132019

Question: Pick a random day from a random year. If it turns out to be the 13th of some month, what day of the week is it most likely to be?

Answer: A Friday!

B.H. Brown's amazing theorem - in honor of Friday September 132019

Question: Pick a random day from a random year. If it turns out to be the 13th of some month, what day of the week is it most likely to be?

Answer: A Friday!
Source: B.H. Brown \& Raphael Robinson, American Mathematical Monthly Volume 40, Number 10 (1933), page 607

Why?

Our calendar, the Gregorian, works on a cycle of 400 years

Why?

Our calendar, the Gregorian, works on a cycle of 400 years

- Every 4th year is a leap year

Why?

Our calendar, the Gregorian, works on a cycle of 400 years

- Every 4th year is a leap year
- Only one of every four century years are leap years
- 1600, 2000, 2400, ... - YES
- 1700, 1800, 1900, 2100, 2200, 2300, ... - NO

Why?

Our calendar, the Gregorian, works on a cycle of 400 years

- Every 4th year is a leap year
- Only one of every four century years are leap years
- 1600, 2000, 2400, ... - YES
- 1700, 1800, 1900, 2100, 2200, 2300, ... - NO
- 400 years is exactly 20,871 weeks
- September 132019 is same day of week as September 13 2419, and September 13 2819, ...

A brute-force calculation

There are 4800 13th-of-the-months in any span of 400 years:

- Monday: 685
- Tuesday: 685
- Wednesday: 687
- Thursday: 684
- Friday: 688
- Saturday: 684
- Sunday: 687

A brute-force calculation

There are 4800 13th-of-the-months in any span of 400 years:

- Monday: 685
- Tuesday: 685
- Wednesday: 687
- Thursday: 684
- Friday: 688
- Saturday: 684
- Sunday: 687

So 13th is (slightly) more likely to be Friday than any other day!

