Math 10860, Honors Calculus 2

Wallis’ formula for

March 13, 2018

In honor of 7w day, March 14, I talked in class about Wallis” product formula for 7.
These notes fill in the details for those who were absent. They also expand a little on
the topic I incoherently extemporized on at the end of class — namely, the connection
between Wallis’ formula and the binomial coefficients, and why I might care about this
connection.

We begin by defining, for integers n > 0, S, := fOW/Q sin" zdx. We have
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, 5 :/ sinzdr = 1,
0

and for n > 2 we get from integration by parts (taking u = sin" !z and dv = sin zdz,
so that du = (n — 1)sin" 2z cos zdz and v = — cos x) that
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= (n—1)S,2— (n—1)S,,
which leads to the recurrence relation
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S, = n Sp_a formn > 2.
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[terating the recurrence relation until the initial conditions are reached, we get that
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Taking the ratio of these two identities and rearranging yields
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Now since 0 < sinz < 1 on [0, 7/2] we have also

0 < sin?* 2 <sin?z <sin* !z,

and so, integrating and using the recurrence relation, we get

2n+1
0 < Sont1 < Sop < Sopq = Sont1
2n
and so g .
1< 22 <14 —.
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This says that by choosing n large enough, the ratio Ss,/Ss,+1 can be made arbitrarily
close to 1, and so the product
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can be made arbitrarily close to /2 by choosing n large enough. This fact as usually
expressed by saying that m/2 can be described by an “infinite product”:
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This infinite product was probably first written down by John Wallis in 1655. Wallis’
other claim to fame is that he was probably the first mathematician to use the symbol
“o0” for infinity.

Note that Wallis’ formula is not a particularly good way to actually estimate ;
because we have 1 < S5, /So,+1 < 14 1/2n, it turns out that to get an estimate of 7
correct to k decimal places, we need to take n == 10*. This is similar to the rate of
convergence of the approximation based on arctan 1.

Wallis” formula can be used to estimate the binomial coefficient (2:) Indeed,
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and so

NI \/(2n +1)(2n - 1)(2n — 1)(2n —3)(2n - 3) --- (3)(3)(1)
220 \[2n+1 (2n)(2n)(2n — 2)(2n —2) -+ (4)(4)(2)(2)
For large enough n, \/n/(2n + 1) can be made arbitrarily close to 1/4/2, and the other

term on the right-hand side above can (by Wallis’ formula) be made arbitrarily close to

\/2/7, so the whole right-hand side can be made arbitrarily close to \/1/7. In other

words,
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(Note that this is not a very helpful limit: at n = 10,000 the expression /n(*") /22"
evaluates to around 0.564183, whereas 1//7 &~ 0.564189).
This limit is usually written
ey
oo~ nm as n — oo;
here I am introducing the symbol “~” read as “asymptotic to”, which is defined as
follows:

f(n) ~g(n) asn— oo

if lim,, o f(n)/g(n) = 1. The sense is that f and g grow at essentially the same rate as
n grows. Note that this does not say that f and g get closer to one another absolutely
as n grows; for example n? ~ n% 4+ n as n — oo, but the difference between the two
sides goes to infinity too. It’s the relative (or proportional) difference that gets smaller.

This estimate for (2:) has a connection to probability. If a fair coin is tossed 2n
times, then the probability that it comes up heads exactly k times is (2]?) /2%, This
quantity is at its largest when n = k (some easy algebra), at which point it takes value
very close to 1/y/nm (as we have just discovered).

Some easy algebra also suggests that we should expect (2,?) /22" to be quite close
to (2:) /22" for k fairly close to n. If this is the case, then we might expect that the
probability of getting some number of heads between n —ngy and n+mng to be somewhat
close to 2ng times the probability of getting n heads, or somewhat close to 2ng/+/n.
If this is true, then by the time ng gets up to somewhere around /n, the probability
of getting some number of heads between n — ny and n + ngy should be somewhat close
to 1.

This intuition can be made precise, in a result called the central limit theorem, one
of the most important results in probability. One very specific corollary of the central
limit theorem is that if a coin is tossed 2n times, then for any constant C' the probability
of getting between n — C'y/n and n + C'y/n heads is at least 1 — e~C*/3. For example,
with n = 1,000,000 and C' = 5, on tossing a coin 2,000,000 times, the probability of
getting between 995,000 and 1,005,000 heads is at least 1 — e=2%/3 a2 .99976.



