
Math 10860, Honors Calculus 2

Wallis’ formula for π

March 13, 2018

In honor of π day, March 14, I talked in class about Wallis’ product formula for π.
These notes fill in the details for those who were absent. They also expand a little on
the topic I incoherently extemporized on at the end of class — namely, the connection
between Wallis’ formula and the binomial coefficients, and why I might care about this
connection.

We begin by defining, for integers n ≥ 0, Sn :=
∫ π/2
0

sinn xdx. We have

S0 =
π

2
, S1 =

∫ π/2

0

sinxdx = 1,

and for n ≥ 2 we get from integration by parts (taking u = sinn−1 x and dv = sinxdx,
so that du = (n− 1) sinn−2 x cosxdx and v = − cosx) that

Sn = (sinn−1 x)(− cosx)|π/2x=0 −
∫ π/2

0

−(n− 1) cosx sinn−2 x cosxdx

= (n− 1)

∫ π/2

0

cos2 x sinn−2 xdx

= (n− 1)

∫ π/2

0

(1− sin2 x) sinn−2 xdx

= (n− 1)Sn−2 − (n− 1)Sn,

which leads to the recurrence relation

Sn =
n− 1

n
Sn−2 for n ≥ 2.

Iterating the recurrence relation until the initial conditions are reached, we get that

S2n =

(
2n− 1

2n

)(
2n− 3

2n− 2

)
· · ·
(

3

4

)(
1

2

)
π

2

and

S2n+1 =

(
2n

2n+ 1

)(
2n− 2

2n− 1

)
· · ·
(

4

5

)(
2

3

)
1.
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Taking the ratio of these two identities and rearranging yields

π

2
=

(
2

1

)(
2

3

)(
4

3

)(
4

5

)
· · ·
(

2n

2n− 1

)(
2n

2n+ 1

)
S2n

S2n+1

.

Now since 0 ≤ sinx ≤ 1 on [0, π/2] we have also

0 ≤ sin2n+1 x ≤ sin2n x ≤ sin2n−1 x,

and so, integrating and using the recurrence relation, we get

0 ≤ S2n+1 ≤ S2n ≤ S2n−1 =
2n+ 1

2n
S2n+1

and so

1 ≤ S2n

S2n+1

≤ 1 +
1

2n
.

This says that by choosing n large enough, the ratio S2n/S2n+1 can be made arbitrarily
close to 1, and so the product(

2

1

)(
2

3

)(
4

3

)(
4

5

)
· · ·
(

2n

2n− 1

)(
2n

2n+ 1

)
can be made arbitrarily close to π/2 by choosing n large enough. This fact as usually
expressed by saying that π/2 can be described by an “infinite product”:

π

2
=

(
2

1

)(
2

3

)(
4

3

)(
4

5

)(
6

5

)(
6

7

)
· · · .

This infinite product was probably first written down by John Wallis in 1655. Wallis’
other claim to fame is that he was probably the first mathematician to use the symbol
“∞” for infinity.

Note that Wallis’ formula is not a particularly good way to actually estimate π;
because we have 1 ≤ S2n/S2n+1 ≤ 1 + 1/2n, it turns out that to get an estimate of π
correct to k decimal places, we need to take n ≈ 10k. This is similar to the rate of
convergence of the approximation based on arctan 1.

Wallis’ formula can be used to estimate the binomial coefficient
(
2n
n

)
. Indeed,(

2n

n

)
=

(2n)(2n− 1)(2n− 2) · · · (3)(2)(1)

(n)(n− 1) · · · (2)(1)(n)(n− 1) · · · (2)(1)

= 2n
(2n− 1)(2n− 3) · · · (3)(1)

(n)(n− 1) · · · (2)(1)

= 22n (2n− 1)(2n− 3) · · · (3)(1)

(2n)(2n− 2) · · · (4)(2)

=
22n

√
2n+ 1

√
(2n+ 1)(2n− 1)(2n− 1)(2n− 3)(2n− 3) · · · (3)(3)(1)

(2n)(2n)(2n− 2)(2n− 2) · · · (4)(4)(2)(2)
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and so

√
n
(
2n
n

)
22n

=

√
n

2n+ 1

√
(2n+ 1)(2n− 1)(2n− 1)(2n− 3)(2n− 3) · · · (3)(3)(1)

(2n)(2n)(2n− 2)(2n− 2) · · · (4)(4)(2)(2)

For large enough n,
√
n/(2n+ 1) can be made arbitrarily close to 1/

√
2, and the other

term on the right-hand side above can (by Wallis’ formula) be made arbitrarily close to√
2/π, so the whole right-hand side can be made arbitrarily close to

√
1/π. In other

words,

lim
n→∞

√
n
(
2n
n

)
22n

=
1√
π
.

(Note that this is not a very helpful limit: at n = 10, 000 the expression
√
n
(
2n
n

)
/22n

evaluates to around 0.564183, whereas 1/
√
π ≈ 0.564189).

This limit is usually written(
2n
n

)
22n
∼ 1√

nπ
as n→∞;

here I am introducing the symbol “∼”, read as “asymptotic to”, which is defined as
follows:

f(n) ∼ g(n) as n→∞

if limn→∞ f(n)/g(n) = 1. The sense is that f and g grow at essentially the same rate as
n grows. Note that this does not say that f and g get closer to one another absolutely
as n grows; for example n2 ∼ n2 + n as n→∞, but the difference between the two
sides goes to infinity too. It’s the relative (or proportional) difference that gets smaller.

This estimate for
(
2n
n

)
has a connection to probability. If a fair coin is tossed 2n

times, then the probability that it comes up heads exactly k times is
(
2n
k

)
/22n. This

quantity is at its largest when n = k (some easy algebra), at which point it takes value
very close to 1/

√
nπ (as we have just discovered).

Some easy algebra also suggests that we should expect
(
2n
k

)
/22n to be quite close

to
(
2n
n

)
/22n for k fairly close to n. If this is the case, then we might expect that the

probability of getting some number of heads between n−n0 and n+n0 to be somewhat
close to 2n0 times the probability of getting n heads, or somewhat close to 2n0/

√
nπ.

If this is true, then by the time n0 gets up to somewhere around
√
n, the probability

of getting some number of heads between n− n0 and n+ n0 should be somewhat close
to 1.

This intuition can be made precise, in a result called the central limit theorem, one
of the most important results in probability. One very specific corollary of the central
limit theorem is that if a coin is tossed 2n times, then for any constant C the probability
of getting between n− C

√
n and n+ C

√
n heads is at least 1− e−C2/3. For example,

with n = 1, 000, 000 and C = 5, on tossing a coin 2, 000, 000 times, the probability of
getting between 995, 000 and 1, 005, 000 heads is at least 1− e−25/3 ≈ .99976.
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