1. (a) Give a clear & correct statement of the fundamental theorem of calculus, part 1.

Solution: If I is an interval, and $f : I \to \mathbb{R}$ is integrable on (every closed interval contained in) I, and the function $F : I \to \mathbb{R}$ is defined by $F(x) = \int_a^x f$ (or, $F(x) = \int_a^x f(t) \, dt$), and if f is continuous at c, then F is differentiable at c, and $F'(c) = f(c)$.

A corollary of this is that if f is continuous on I then F is differentiable on I, and $F' = f$ on I, but this corollary doesn’t imply FTOC1 — knowing something about what happens if f is continuous everywhere doesn’t allow us to deduce anything about what happens if f is continuous at just one point. So this cannot be considered a correct answer to the question.

(b) Give a clear & correct statement of the fundamental theorem of calculus, part 2.

Solution: If $f : [a, b] \to \mathbb{R}$ is integrable, and if there is a function $g : [a, b] \to \mathbb{R}$ satisfying $g' = f$ on $[a, b]$, then $\int_a^b f = g(b) - g(a)$.

The weaker statement that replaces “f is integrable” with “f is continuous” is not quite FTOC2; it is really just a corollary of FTOC1.

2. Determine directly (without comparison to other, known, integrals) whether the improper integral $\int_1^\infty \frac{dx}{\sqrt{x}}$ exists. (You may use FTOC if you wish.)

Solution: The easiest approach uses FTOC2. On $[1, N]$ and antiderivative for f is $g(x) = 2\sqrt{x}$, so $\int_1^N f = 2\sqrt{N} - 2\sqrt{1}$. Since $2\sqrt{N} - 2\sqrt{1}$ can be made arbitrarily large by choosing N large enough, we get that $\lim_{N \to \infty} \int_1^N \frac{dx}{\sqrt{x}}$ does not exist.

A longer, but more direct approach, combines elements of our proof that $1/x$ is not integrable on $[1, \infty]$, with elements of the proof of the comparison theorem. We have that $1/\sqrt{x}$ is decreasing on $[1, \infty)$, and is continuous, so for $1 \leq a < b < \infty$,

$$\int_a^b \frac{dx}{\sqrt{x}} \geq \frac{b - a}{\sqrt{b}}.$$

In particular,

$$\int_1^n \frac{dx}{\sqrt{x}} \geq \frac{n - 1}{\sqrt{n}} = \sqrt{n} - \frac{1}{\sqrt{n}} \geq \frac{\sqrt{n}}{2},$$

with the last inequality valid for all sufficiently large n (specifically, it is valid for $n \geq 2$).

Now since $\sqrt{n}/2 \to \infty$ as $n \to \infty$, it follows that $\int_1^\infty \frac{dx}{\sqrt{x}}$ does not exist.