1. State Taylor’s Theorem with the Lagrange form of the remainder term.

Solution: If \(f \) is a function with \(f, f', f'', \ldots, f^{(n+1)} \) all existing on some interval that includes both \(a \) and \(x \), then there is some number \(c \) between \(a \) and \(x \) such that

\[
f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.
\]

(or: \(f(x) = P_{n,a,f}(x) + R_{n,a,f}(x) \), where \(R_{n,a,f}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \).

Note: When we proved this, we added the hypothesis that \(f^{(n+1)} \) is continuous on the interval whose endpoints are \(a \) and \(x \), and it’s ok to state the theorem in those terms.

2. (a) Let \(f(x) = \frac{1}{x^2} \). By repeatedly calculating derivatives, write down the Taylor polynomial of degree \(n \) of \(f \) at 0, that is, \(P_{n,0,f}(x) \). (You don’t need to do this formally by induction; once you have spotted the pattern, go with it.)

Solution: We have \(f(0) = 1 \); \(f'(x) = 1/(1-x)^2 \), so \(f'(0) = 1 \); \(f''(x) = 2/(1-x)^3 \), so \(f''(0) = 2 \); \(f'''(x) = 6/(1-x)^4 \), so \(f'''(0) = 6 \); and in general if \(f^{(k)}(x) = k!/(1-x)^{k+1} \), so \(f^{(k)}(0) = k! \), then \(f^{(k+1)}(x) = (k+1)!/(1-x)^{k+2} \), so \(f^{(k+1)}(0) = (k+1)! \). So

\[
P_{n,0,f}(x) = 1 + x + x^2 + \cdots + x^n.
\]

The quiz as given out asked for \(P_{n,a,f}(x) \) We have \(f(a) = 1/(1-a) \); \(f'(x) = 1/(1-x)^2 \), so \(f'(a) = 1/(1-a)^2 \); \(f''(x) = 2/(1-x)^3 \), so \(f''(a) = 2/(1-a)^3 \); \(f'''(x) = 6/(1-x)^4 \), so \(f'''(a) = 6/(1-a)^4 \); and in general if \(f^{(k)}(x) = k!/(1-x)^{k+1} \), so \(f^{(k)}(a) = k!/(1-a)^{k+1} \), then \(f^{(k+1)}(x) = (k+1)!/(1-x)^{k+2} \), so \(f^{(k+1)}(a) = (k+1)!/(1-a)^{k+2} \). So

\[
P_{n,a,f}(x) = \frac{1}{1-a} + \frac{(x-a)}{(1-a)^2} + \frac{(x-a)^2}{(1-a)^3} + \cdots + \frac{(x-a)^n}{(1-a)^{n+1}}.
\]

(b) Use the Lagrange form of the remainder term to show that if \(0 < x < 1/2 \) then \(P_{n,0,f}(x) \to f(x) \) as \(n \to \infty \).

Solution: The Lagrange form of the remainder term gives

\[
R_{n,0,f}(x) = f^{(n+1)}(c) \frac{x^{n+1}}{(n+1)!} = \left(\frac{n+1}{1-c} \right) \frac{x^{n+1}}{(n+1)!} = \left(\frac{x}{1-c} \right)^{n+1}.
\]

where \(c \) is some number between 0 and \(x \). We have \(0 < c < x < 1/2 \); but also we have \(x < 1/2 \); so \(0 < x < 1-c \), and so \(0 < \frac{x}{1-c} < 1 \). From this it seems reasonable that it might follow that \(\left(\frac{x}{1-c} \right)^{n+1} \to 0 \) as \(n \to \infty \), so \(R_{n,0,f}(x) \to 0 \), so \(P_{n,0,f}(x) \to f(x) \). But we have to be careful: \(c \) here is **not** a constant (necessarily); it changes as \(n \) changes (possible).
So it might be the case that while $\frac{x}{1-c} < 1$ for each n, we have $x/(1 - c)$ approaching arbitrarily close 1 as n grows, making it difficult to conclude $\left(\frac{x}{1-c}\right)^{n+1} \to 0$; indeed, it might be that eventually

$$\frac{x}{1-c} = 1 - \frac{1}{n} (< 1),$$

in which case

$$\left(\frac{x}{1-c}\right)^{n+1} \to \frac{1}{e} \neq 0.$$

To rule something like this out, we have to realize that since x is a fixed number below 1/2, we have $x = 1/2 - \varepsilon$ for some $\varepsilon > 0$, so from $1 - c > 1/2$ we get

$$\frac{x}{1-c} < 1 - 2\varepsilon;$$

and since ε does not depend on n, we can now safely say

$$\left(\frac{x}{1-c}\right)^{n+1} < (1 - 2\varepsilon)^{n+1} \to 0.$$

The quiz as given out asked to show that $P_{n,a,f}(x) \to f(x)$ as $n \to \infty$ for $0 < x < 1/2$. But this is nonsense :(.