Math 10860, Honors Calculus 2

Final Exam

Solutions

1. (12 points)

(a) (5 points) Use the definition of the Darboux integral to show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is an even function, and f is integrable, then for all $0 \leq a<b$ it holds that

$$
\int_{a}^{b} f=\int_{-b}^{-a} f
$$

Solution: Let $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ (with $a=t_{0}<t_{1}<\cdots<t_{n}=b$) be any partition of $[a, b]$. Corresponding to this there is a partition P^{\prime} of $[-b,-a]$, namely

$$
P^{\prime}=\left\{-t_{n},-t_{n-1}, \ldots,-t_{0}\right\},
$$

and every partition of $[-b,-a]$ arises from some partition of $[a, b]$ via this process (i.e., there is a 1-1 correspondence between partitions of $[a, b]$ and partitions of $[-b,-a]$, given by the process described above.)
Now for each i, and for each $x \in\left[t_{i-1}, t_{i}\right]$, we have $-x \in\left[-t_{i},-t_{i-1}\right]$ and (by evenness of f) we have $f(-x)=f(x)$; conversely, for each $x \in\left[-t_{i},-t_{i-1}\right]$ we have $-x \in\left[-t_{i},-t_{i-1}\right]$, and again $f(-x)=f(x)$. It follows that for each i,

$$
\left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}=\left\{f(x): x \in\left[-t_{i},-t_{i-1}\right]\right\},
$$

and so
$\sup \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}=\sup \left\{f(x): x \in\left[-t_{i},-t_{i-1}\right]\right\}, \quad \inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}=\inf \{f(x): x \in$
From this we get that

$$
U(f, P)=U\left(f, P^{\prime}\right) \quad \text { and } \quad L(f, P)=L\left(f, P^{\prime}\right)
$$

Finally, the fact that for every $P($ for $[a, b])$ there is a corresponding $P^{\prime}($ for $[-b,-a])$ says that

$$
\inf U(f, P)=\inf U\left(f, P^{\prime}\right) \quad \text { and } \quad \sup L(f, P)=\sup L\left(f, P^{\prime}\right)
$$

so

$$
\int_{a}^{b} f=\int_{-b}^{-a} f
$$

(b) (5 points) Suppose $h:[0,1] \rightarrow \mathbb{R}$ is a continuous function with $h(x) \geq 0$ for all $x \in[0,1]$, and with $\int_{0}^{1} h(x) d x=0$. Show that $h(x)=0$ for all $x \in[0,1]$.

Solution: Suppose for a contradiction that there is some $x \in[0,1]$ with $h(x)>0$. Then by continuity of h at x, there is some $\delta>0$ such that $h\left(x^{\prime}\right) \geq h(x) / 2$ for all $x \in[0,1]$ within δ of x.
If $x=0$, consider the partition $P=(0, \delta, 1)$; it has lower Darboux sum at least $\delta h(x) / 2$ (since for each $x^{\prime} \in[0, \delta]$, we have $\left.h\left(x^{\prime}\right) \geq h(x) / 2\right)$.
If $x=1$, consider the partition $P=(0,1-\delta, 1)$; it has lower Darboux sum at least $\delta h(x) / 2$ (since for each $x^{\prime} \in[1-\delta, \delta]$, we have $\left.h\left(x^{\prime}\right) \geq h(x) / 2\right)$.
If $x \in(0,1)$, we can take δ small enough that $[x-\delta, x+\delta] \in[0,1]$. Consider the partition $P=(0, x-\delta, x+\delta, 1)$; it has lower Darboux sum at least $2 \delta h(x) / 2$ (since for each $x^{\prime} \in[x-\delta, x+\delta]$, we have $\left.h\left(x^{\prime}\right) \geq h(x) / 2\right)$.
So, whatever the value of x, there is a partition for which the lower Darboux sum is at least $\delta h(x) / 2$, and hence

$$
\int_{0}^{1} h(x) d x \geq \delta h(x) / 2>0
$$

the required contradiction.
(c) (2 points) Does the conclusion of the last part remain valid if the assumption of continuity is dropped?

Solution: No; consider for example the function that takes the value 1 at $1 / 2$, and 0 everywhere else.
2. (10 points. If either of these are causing you a headache, ask me for a hint in exchange for a point.)
(a) (5 points) Let x be in ($0, \pi / 2$). Show that the expression

$$
\int_{-\cos x}^{\sin x} \frac{d t}{\sqrt{1-t^{2}}}
$$

does not depend on x, and find its value.
Solution: Letting $f(x)=\int_{-\cos x}^{\sin x} \frac{d t}{\sqrt{1-t^{2}}}$ we have

$$
f(x)=\int_{-\cos x}^{0} \frac{d t}{\sqrt{1-t^{2}}}+\int_{0}^{\sin x} \frac{d t}{\sqrt{1-t^{2}}}=-\int_{0}^{-\cos x} \frac{d t}{\sqrt{1-t^{2}}}+\int_{0}^{\sin x} \frac{d t}{\sqrt{1-t^{2}}}
$$

Using FTOC (part 1) and chain rule, we get

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{\sin x}{\sqrt{1-(-\cos x)^{2}}}+\frac{\cos x}{\sqrt{1-(\sin x)^{2}}} \\
& =\frac{-\sin x}{\sin x}+\frac{\cos x}{\cos x} \\
& =0
\end{aligned}
$$

so that f is constant. Here we are using that on $(0, \pi / 2)$ both \sin and cos are strictly positive, so that $\sqrt{1-(\sin x)^{2}}=\cos x$ (as opposed to $\left.-\cos x\right)$ and $\sqrt{1-(-\cos x)^{2}}=$ $\sin x$, and also so that we are not ever dividing by 0 .
To compute the integral, we need only pick a single value of x, say $x \in \pi / 2$, and use that the derivative of $\arcsin x$ is $1 / \sqrt{1-x^{2}}$, to get

$$
f(x)=f(\pi / 2)=\int_{-\sqrt{2} / 2}^{\sqrt{2} / 2} \frac{d t}{\sqrt{1-t^{2}}}=[\arcsin x]_{x=-\sqrt{2} / 2}^{\sqrt{2} / 2}=\frac{\pi}{2}
$$

(b) (5 points) Compute $\lim _{x \rightarrow 0} \frac{1}{x^{2}} \int_{0}^{x} \frac{t}{1+t+e^{t}} d t$.

Solution: The fastest approach is via L'Hôpital's rule (since both numerator and denominator of

$$
\frac{\int_{0}^{x} \frac{t}{1+t+e^{t}} d t}{x^{2}}
$$

tend to 0 as x approaches 0). Using the fundamental theorem of calculus (part 1) for the numerator we have

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}} \int_{0}^{x} \frac{t}{1+t+e^{t}} d t=\lim _{x \rightarrow 0} \frac{\frac{x}{1+x+e^{x}}}{2 x}=\lim _{x \rightarrow 0} \frac{1}{2\left(1+x+e^{x}\right)}=\frac{1}{4}
$$

3. (14 points)
(a) (7 points) For $n \geq 0, n \in \mathbb{N}$, set

$$
I_{n}=\int x^{n} \sqrt{1+x} d x
$$

i. (2 point) Find I_{1} (i.e., as an expression that doesn't involve an integral).

Solution: Integration by parts, as used in the next part, is one possibility; here's another. Use the substitution $u=x+1$, so $d u=d x$ and $x=(u-1)$ to get

$$
\begin{aligned}
I_{1} & =\int x \sqrt{1+x} d x \\
& =\int(u-1) \sqrt{u} d u \\
& =\int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\frac{2 u^{5 / 2}}{5}-\frac{2 u^{3 / 2}}{3} \\
& =\frac{2(x+1)^{5 / 2}}{5}-\frac{2(x+1)^{3 / 2}}{3} .
\end{aligned}
$$

ii. (5 points) Using integration by parts, find a reduction formula that expresses I_{n} in terms of I_{n-1}.
Solution: Take $u=x^{n}$ so $d u=n x^{n-1} d x$ and $d v=\sqrt{1+x}$ so $v=\frac{2(1+x)^{3 / 2}}{3}=$ $\frac{2}{3}(1+x) \sqrt{1+x}$ to get

$$
\begin{aligned}
I_{n} & =\int x^{n} \sqrt{1+x} d x \\
& =\frac{2 x^{n}(1+x)^{3 / 2}}{3}-\frac{2 n}{3} \int x^{n-1}(1+x) \sqrt{1+x} d x \\
& =\frac{2 x^{n}(1+x)^{3 / 2}}{3}-\frac{2 n}{3}\left(I_{n-1}+I_{n}\right) .
\end{aligned}
$$

So

$$
\left(1+\frac{2 n}{3}\right) I_{n}=\frac{2 x^{n}(1+x)^{3 / 2}}{3}-\frac{2 n}{3} I_{n-1}
$$

or

$$
I_{n}=\frac{2 x^{n}(1+x)^{3 / 2}}{3+2 n}-\frac{2 n}{3+2 n} I_{n-1}
$$

(b) (4 points) Find $\int \log \sqrt{1+x^{2}} d x$.

Solution: Use integration by parts, with

$$
u=\log \sqrt{1+x^{2}}, \quad d u=\frac{2 x d x}{2 \sqrt{1+x^{2}} \sqrt{1+x^{2}}}=\frac{x}{1+x^{2}}
$$

and

$$
d v=d x, \quad v=x
$$

to get

$$
\begin{aligned}
\int \log \sqrt{1+x^{2}} d x & =x \log \sqrt{1+x^{2}}-\int \frac{x^{2} d x}{1+x^{2}} \\
& =x \log \sqrt{1+x^{2}}-\int\left(1-\frac{1}{1+x^{2}}\right) d x \\
& =x \log \sqrt{1+x^{2}}-x+\arctan (x)
\end{aligned}
$$

(c) (3 points) Does $\frac{3 e^{3 x}+2 e^{2 x}+e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)^{2}\left(3+e^{x}\right)^{3}}$ have an elementary primitive? (Briefly explain your reasoning, but please don't try to compute the integral - this should be short!)
Solution: Yes! Using substitution $u=e^{x}$ (so $d u=e^{x} d x$ and $d x=d u / e^{x}=d u / u$) we get

$$
\int \frac{3 e^{3 x}+2 e^{2 x}+e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)^{2}\left(3+e^{x}\right)^{3}} d x=\int \frac{3 u^{2}+2 u+1}{(1+u)(2+u)^{2}(3+u)^{3}} d u
$$

This latter integral has an elementary primitive by partial fractions, and substituting back $u=e^{x}$ gives an elementary primitive for the original integrand.
4. (12 points)
(a) (4 points) Let $s_{n}(x)=1+x+x^{2}+\cdots+x^{n}$ and let $f(x)=\frac{1}{1-x}$. Fix $x_{0} \in(0,1)$. Carefully show that $s_{n} \rightarrow f$ uniformly on the interval $\left[-x_{0}, x_{0}\right]^{1}$.
Solution: For any $x \in\left[-x_{0}, x_{0}\right]$ we have

$$
\begin{aligned}
\left|f(x)-s_{n}(x)\right| & =\left|\frac{1}{1-x}-\frac{1-x^{n+1}}{1-x}\right| \\
& =\left|\frac{x^{n+1}}{1-x}\right| \\
& \leq \frac{|x|^{n+1}}{|1-x|}
\end{aligned}
$$

Now we use

- $x \leq x_{0}$, so $1-x \geq 1-x_{0}>0$, so $0<1 /(1-x) \leq 1 /\left(1-x_{0}\right)$, so $1 /|1-x| \leq$ $1 /\left(1-x_{0}\right)$, and
- $|x| \leq\left|x_{0}\right|$, so $|x|^{n+1} \leq x_{0}^{n+1}$,
to get

$$
\left|f(x)-s_{n}(x)\right| \leq \frac{x_{0}^{n+1}}{1-x_{0}}
$$

Because $0<x_{0}<1$, given any ε there is an N (depending only on x_{0}, not on x) such that $n>N$ implies

$$
\frac{x_{0}^{n+1}}{1-x_{0}}<\varepsilon
$$

(since $x_{0}^{n+1} /\left(1-x_{0}\right) \rightarrow 0$ as $\left.n \rightarrow \infty\right)$. So for $n>N$, we have

$$
\left|f(x)-s_{n}(x)\right|<\varepsilon
$$

This shows that $s_{n} \rightarrow f$ uniformly on $\left[-x_{0}, x_{0}\right]$.
(b) (8 points) Using what you know about the radius of convergence of the series $\sum_{n=0}^{\infty} x^{n}$ (and theorems about what happens inside the radius of convergence), evaluate each of the following sums, with brief justifications:
i. (4 points) $\sum_{n=0}^{\infty}(-1)^{n} \frac{n(n-1)}{3^{n}}$.

Solution: As shown in part (a), or from notes, or from the ratio test, the radius of convergence of $\sum_{n=0}^{\infty} x^{n}$ is 1 . So on any interval of the form $\left[-x_{0}, x_{0}\right]$, $0<x_{0}<1$, we have

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}
$$

and, differentiating term-by-term (valid inside the radius of convergence), we have

$$
\sum_{n=0}^{\infty} n x^{n-1}=1+2 x+3 x^{2}+\cdots=\frac{1}{(1-x)^{2}}
$$

[^0]Differentiating term-by-term a second time (again, valid inside the radius of convergence), we have

$$
\sum_{n=0}^{\infty} n(n-1) x^{n-2}=2+6 x+12 x^{2}+\cdots=\frac{2}{(1-x)^{3}}
$$

At $x=-1 / 3$ (well inside the radius of convergence) we get

$$
\sum_{n=0}^{\infty}(-1)^{n-2} \frac{n(n-1)}{3^{n-2}}=\frac{2}{(1+(1 / 3))^{3}}=\frac{27}{32}
$$

so

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{n(n-1)}{3^{n}}=\frac{1}{9} \sum_{n=0}^{\infty}(-1)^{n} \frac{n(n-1)}{3^{n-2}}=\frac{3}{32}=0.09375 .
$$

ii. (4 points) $\sum_{n=1}^{\infty} \frac{2^{n}}{n 3^{n}}$.

Solution: This time we integrate term-by-term (again, valid inside radius of convergence):

$$
\begin{aligned}
-\log (1-x) & =\int_{0}^{x} \frac{1}{1-t} d t \\
& =\int_{0}^{x}\left(\sum_{n=0}^{\infty} t^{n}\right) d t \\
& =\sum_{n=0}^{\infty} \int_{0}^{x} t^{n} d t \\
& =\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \\
& =\sum_{n=1}^{\infty} \frac{x^{n}}{n}
\end{aligned}
$$

Evaluating at $x=2 / 3$ we get

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n 3^{n}}=-\log (1 / 3)=\log 3
$$

5. (6 points. This is the last question, of the last graded part, of first-year Honors Calculus. Make of that what you will...)
(a) (2 points) Suppose that $f:(0, \infty) \rightarrow \mathbb{R}$ is twice-differentiable, and that there is an M_{0} such that $|f(x)| \leq M_{0}$ and an M_{2} such that $\left|f^{\prime \prime}(x)\right| \leq M_{2}$ for all $x \in(0, \infty)$. Prove that for all $h>0$ and all $x \in(0, \infty)$,

$$
\left|f^{\prime}(x)\right| \leq \frac{2}{h} M_{0}+\frac{h}{2} M_{2}
$$

Solution: For ant $x>0$, apply Taylor's theorem (with the Lagrange form of the remainder term) to the Taylor polynomial (of degree 1) of f centered at x, to get that for all $h>0$ we have

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(c) \frac{h^{2}}{2}
$$

where c is some number between x and $x+h$. Dividing through by h and re-arranging, get

$$
f^{\prime}(x)=\frac{f(x+h)}{h}-\frac{f(x)}{h}-\frac{f^{\prime \prime}(c) h}{2} .
$$

Taking absolute values of both sides and using the triangle inequality, get

$$
\left|f^{\prime}(x)\right| \leq \frac{|f(x+h)|}{h}+\frac{|f(x)|}{h}+\frac{\left|f^{\prime \prime}(c)\right| h}{2} .
$$

By hypothesis $|f(x+h)|,|f(x)| \leq M_{0}$ and $\left|f^{\prime \prime}(c)\right| \leq M_{2}$, so

$$
\left|f^{\prime}(x)\right| \leq \frac{2}{h} M_{0}+\frac{h}{2} M_{2}
$$

(b) (2 points) With the hypothesis as in part (a), deduce that for all $x \in(0, \infty)$,

$$
\left|f^{\prime}(x)\right| \leq 2 \sqrt{M_{0} M_{2}}
$$

Solution: The inequality proved in part (a) is valid for any $h>0$. We would like to find the choice of $h>0$ that makes the right-hand side of part (a) as small as possible.
Set $g(h)=(2 / h) M_{0}+(h / 2) M_{2}$. We have $g^{\prime}(h)=-\left(2 / h^{2}\right) M_{0}+M_{2} / 2$. This derivative is negative on $\left(0,2 \sqrt{M_{0} / M_{2}}\right)$ and positive on $\left(2 \sqrt{M_{0} / M_{2}}, \infty\right)$, so on $(0, \infty)$ the function g has a global minimum at $2 \sqrt{M_{0} / M_{2}}$. Applying the result of part (a) at this value, get

$$
\left|f^{\prime}(x)\right| \leq \frac{2}{2 \sqrt{M_{0} / M_{2}}} M_{0}+\frac{2 \sqrt{M_{0} / M_{2}}}{2} M_{2}=2 \sqrt{M_{0} M_{2}} .
$$

(c) (2 points) Suppose that $f:(0, \infty) \rightarrow \mathbb{R}$ is twice-differentiable, that $f^{\prime \prime}(x)$ is bounded, and that $f(x) \rightarrow 0$ as $x \rightarrow \infty$. Prove that $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$.

Solution: The results of parts (a) and (b) go through without any change, when applied to the interval (a, ∞) for any $a \geq 0$. In other words:

Suppose that $f:(a, \infty) \rightarrow \mathbb{R}$ is twice-differentiable, and that there is an $M_{0, a}$ such that $|f(x)| \leq M_{0, a}$ and an $M_{2, a}$ such that $\left|f^{\prime \prime}(x)\right| \leq M_{2, a}$ for all $x \in(a, \infty)$. Then for all $x \in(a, \infty)$,

$$
\left|f^{\prime}(x)\right| \leq 2 \sqrt{M_{0, a} M_{2, a}} .
$$

For the given function f of the problem, we may take $M_{2,0}=M$ for some M that doesn't depend on a (we are given that $f^{\prime \prime}(x)$ is bounded). So we can say that for all $x \in(a, \infty)$,

$$
\left|f^{\prime}(x)\right| \leq 2 \sqrt{M_{0, a} M}
$$

for some absolute constant M.
Now, given that $f(x) \rightarrow 0$ as $x \rightarrow \infty$, given $\varepsilon>0$ there is a such that on (a, ∞) we have $|f(x)|<\frac{\varepsilon^{2}}{4 M}$, so on (a, ∞) we may take $M_{0, a}=\frac{\varepsilon^{2}}{4 M}$, and we get that for $x>a$,

$$
\left|f^{\prime}(x)\right| \leq 2 \sqrt{M} \sqrt{\frac{\varepsilon^{2}}{4 M}}=\varepsilon
$$

Since ε was arbitrary, this shows that $\left|f^{\prime}(x)\right| \rightarrow 0$ as $x \rightarrow \infty$.

[^0]: ${ }^{1}$ It may be helpful to remember that for $x \neq 1,1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}$.

