
Math 10860, Honors Calculus 2

Final Exam

Solutions

1. (12 points)

(a) (5 points) Use the definition of the Darboux integral to show that if f : R→ R is an
even function, and f is integrable, then for all 0 ≤ a < b it holds that∫ b

a

f =

∫ −a
−b

f.

Solution: Let P = {t0, t1, . . . , tn} (with a = t0 < t1 < · · · < tn = b) be any partition
of [a, b]. Corresponding to this there is a partition P ′ of [−b,−a], namely

P ′ = {−tn,−tn−1, . . . ,−t0},

and every partition of [−b,−a] arises from some partition of [a, b] via this process (i.e.,
there is a 1-1 correspondence between partitions of [a, b] and partitions of [−b,−a],
given by the process described above.)

Now for each i, and for each x ∈ [ti−1, ti], we have −x ∈ [−ti,−ti−1] and (by
evenness of f) we have f(−x) = f(x); conversely, for each x ∈ [−ti,−ti−1] we have
−x ∈ [−ti,−ti−1], and again f(−x) = f(x). It follows that for each i,

{f(x) : x ∈ [ti−1, ti]} = {f(x) : x ∈ [−ti,−ti−1]},

and so

sup{f(x) : x ∈ [ti−1, ti]} = sup{f(x) : x ∈ [−ti,−ti−1]}, inf{f(x) : x ∈ [ti−1, ti]} = inf{f(x) : x ∈ [−ti,−ti−1]}.

From this we get that

U(f, P ) = U(f, P ′) and L(f, P ) = L(f, P ′).

Finally, the fact that for every P (for [a, b]) there is a corresponding P ′ (for [−b,−a])
says that

inf U(f, P ) = inf U(f, P ′) and supL(f, P ) = supL(f, P ′),

so ∫ b

a

f =

∫ −a
−b

f.



(b) (5 points) Suppose h : [0, 1] → R is a continuous function with h(x) ≥ 0 for all

x ∈ [0, 1], and with
∫ 1

0
h(x)dx = 0. Show that h(x) = 0 for all x ∈ [0, 1].

Solution: Suppose for a contradiction that there is some x ∈ [0, 1] with h(x) > 0.
Then by continuity of h at x, there is some δ > 0 such that h(x′) ≥ h(x)/2 for all
x ∈ [0, 1] within δ of x.

If x = 0, consider the partition P = (0, δ, 1); it has lower Darboux sum at least
δh(x)/2 (since for each x′ ∈ [0, δ], we have h(x′) ≥ h(x)/2).

If x = 1, consider the partition P = (0, 1− δ, 1); it has lower Darboux sum at least
δh(x)/2 (since for each x′ ∈ [1− δ, δ], we have h(x′) ≥ h(x)/2).

If x ∈ (0, 1), we can take δ small enough that [x − δ, x + δ] ∈ [0, 1]. Consider the
partition P = (0, x− δ, x+ δ, 1); it has lower Darboux sum at least 2δh(x)/2 (since
for each x′ ∈ [x− δ, x+ δ], we have h(x′) ≥ h(x)/2).

So, whatever the value of x, there is a partition for which the lower Darboux sum is
at least δh(x)/2, and hence ∫ 1

0

h(x)dx ≥ δh(x)/2 > 0,

the required contradiction.

(c) (2 points) Does the conclusion of the last part remain valid if the assumption of
continuity is dropped?

Solution: No; consider for example the function that takes the value 1 at 1/2, and
0 everywhere else.

2. (10 points. If either of these are causing you a headache, ask me for a hint in exchange for
a point.)

(a) (5 points) Let x be in (0, π/2). Show that the expression∫ sinx

− cosx

dt√
1− t2

does not depend on x, and find its value.

Solution: Letting f(x) =
∫ sinx

− cosx
dt√
1−t2 we have

f(x) =

∫ 0

− cosx

dt√
1− t2

+

∫ sinx

0

dt√
1− t2

= −
∫ − cosx

0

dt√
1− t2

+

∫ sinx

0

dt√
1− t2

.

Using FTOC (part 1) and chain rule, we get

f ′(x) = − sinx√
1− (− cosx)2

+
cosx√

1− (sinx)2

=
− sinx

sinx
+

cosx

cosx
= 0,



so that f is constant. Here we are using that on (0, π/2) both sin and cos are strictly
positive, so that

√
1− (sinx)2 = cosx (as opposed to − cosx) and

√
1− (− cosx)2 =

sinx, and also so that we are not ever dividing by 0.

To compute the integral, we need only pick a single value of x, say x ∈ π/2, and use
that the derivative of arcsin x is 1/

√
1− x2, to get

f(x) = f(π/2) =

∫ √2/2
−
√
2/2

dt√
1− t2

= [arcsinx]
√
2/2

x=−
√
2/2

=
π

2
.

(b) (5 points) Compute limx→0
1
x2

∫ x

0
t

1+t+et
dt.

Solution: The fastest approach is via L’Hôpital’s rule (since both numerator and
denominator of ∫ x

0
t

1+t+et
dt

x2

tend to 0 as x approaches 0). Using the fundamental theorem of calculus (part 1) for
the numerator we have

lim
x→0

1

x2

∫ x

0

t

1 + t+ et
dt = lim

x→0

x
1+x+ex

2x
= lim

x→0

1

2(1 + x+ ex)
=

1

4
.

3. (14 points)

(a) (7 points) For n ≥ 0, n ∈ N, set

In =

∫
xn
√

1 + x dx.

i. (2 point) Find I1 (i.e., as an expression that doesn’t involve an integral).

Solution: Integration by parts, as used in the next part, is one possibility; here’s
another. Use the substitution u = x+ 1, so du = dx and x = (u− 1) to get

I1 =

∫
x
√

1 + x dx

=

∫
(u− 1)

√
u du

=

∫ (
u3/2 − u1/2

)
du

=
2u5/2

5
− 2u3/2

3

=
2(x+ 1)5/2

5
− 2(x+ 1)3/2

3
.



ii. (5 points) Using integration by parts, find a reduction formula that expresses In
in terms of In−1.

Solution: Take u = xn so du = nxn−1dx and dv =
√

1 + x so v = 2(1+x)3/2

3
=

2
3
(1 + x)

√
1 + x to get

In =

∫
xn
√

1 + x dx

=
2xn(1 + x)3/2

3
− 2n

3

∫
xn−1(1 + x)

√
1 + x dx

=
2xn(1 + x)3/2

3
− 2n

3
(In−1 + In) .

So (
1 +

2n

3

)
In =

2xn(1 + x)3/2

3
− 2n

3
In−1

or

In =
2xn(1 + x)3/2

3 + 2n
− 2n

3 + 2n
In−1.

(b) (4 points) Find
∫

log
√

1 + x2 dx.

Solution: Use integration by parts, with

u = log
√

1 + x2, du =
2x dx

2
√

1 + x2
√

1 + x2
=

x

1 + x2

and
dv = dx, v = x,

to get ∫
log
√

1 + x2 dx = x log
√

1 + x2 −
∫

x2 dx

1 + x2

= x log
√

1 + x2 −
∫ (

1− 1

1 + x2

)
dx

= x log
√

1 + x2 − x+ arctan(x).

(c) (3 points) Does 3e3x+2e2x+ex

(1+ex)(2+ex)2(3+ex)3
have an elementary primitive? (Briefly explain

your reasoning, but please don’t try to compute the integral — this should be short!)

Solution: Yes! Using substitution u = ex (so du = ex dx and dx = du/ex = du/u)
we get ∫

3e3x + 2e2x + ex

(1 + ex)(2 + ex)2(3 + ex)3
dx =

∫
3u2 + 2u+ 1

(1 + u)(2 + u)2(3 + u)3
du.

This latter integral has an elementary primitive by partial fractions, and substituting
back u = ex gives an elementary primitive for the original integrand.



4. (12 points)

(a) (4 points) Let sn(x) = 1 + x + x2 + · · · + xn and let f(x) = 1
1−x . Fix x0 ∈ (0, 1).

Carefully show that sn → f uniformly on the interval [−x0, x0]1.

Solution: For any x ∈ [−x0, x0] we have

|f(x)− sn(x)| =

∣∣∣∣ 1

1− x
− 1− xn+1

1− x

∣∣∣∣
=

∣∣∣∣ xn+1

1− x

∣∣∣∣
≤ |x|n+1

|1− x|
.

Now we use

• x ≤ x0, so 1 − x ≥ 1 − x0 > 0, so 0 < 1/(1 − x) ≤ 1/(1 − x0), so 1/|1 − x| ≤
1/(1− x0), and

• |x| ≤ |x0|, so |x|n+1 ≤ xn+1
0 ,

to get

|f(x)− sn(x)| ≤ xn+1
0

1− x0
.

Because 0 < x0 < 1, given any ε there is an N (depending only on x0, not on x) such
that n > N implies

xn+1
0

1− x0
< ε

(since xn+1
0 /(1− x0)→ 0 as n→∞). So for n > N , we have

|f(x)− sn(x)| < ε.

This shows that sn → f uniformly on [−x0, x0].

(b) (8 points) Using what you know about the radius of convergence of the series
∑∞

n=0 x
n

(and theorems about what happens inside the radius of convergence), evaluate each
of the following sums, with brief justifications:

i. (4 points)
∑∞

n=0(−1)n n(n−1)
3n

.

Solution: As shown in part (a), or from notes, or from the ratio test, the
radius of convergence of

∑∞
n=0 x

n is 1. So on any interval of the form [−x0, x0],
0 < x0 < 1, we have

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · = 1

1− x
,

and, differentiating term-by-term (valid inside the radius of convergence), we
have

∞∑
n=0

nxn−1 = 1 + 2x+ 3x2 + · · · = 1

(1− x)2
.

1It may be helpful to remember that for x 6= 1, 1 + x+ x2 + · · ·+ xn = 1−xn+1

1−x .



Differentiating term-by-term a second time (again, valid inside the radius of
convergence), we have

∞∑
n=0

n(n− 1)xn−2 = 2 + 6x+ 12x2 + · · · = 2

(1− x)3
.

At x = −1/3 (well inside the radius of convergence) we get

∞∑
n=0

(−1)n−2
n(n− 1)

3n−2 =
2

(1 + (1/3))3
=

27

32
,

so
∞∑
n=0

(−1)n
n(n− 1)

3n
=

1

9

∞∑
n=0

(−1)n
n(n− 1)

3n−2 =
3

32
= 0.09375.

ii. (4 points)
∑∞

n=1
2n

n3n
.

Solution: This time we integrate term-by-term (again, valid inside radius of
convergence):

− log(1− x) =

∫ x

0

1

1− t
dt

=

∫ x

0

(
∞∑
n=0

tn

)
dt

=
∞∑
n=0

∫ x

0

tn dt

=
∞∑
n=0

xn+1

n+ 1

=
∞∑
n=1

xn

n
.

Evaluating at x = 2/3 we get

∞∑
n=1

2n

n3n
= − log(1/3) = log 3.

5. (6 points. This is the last question, of the last graded part, of first-year Honors Calculus.
Make of that what you will...)

(a) (2 points) Suppose that f : (0,∞)→ R is twice-differentiable, and that there is an
M0 such that |f(x)| ≤ M0 and an M2 such that |f ′′(x)| ≤ M2 for all x ∈ (0,∞).
Prove that for all h > 0 and all x ∈ (0,∞),

|f ′(x)| ≤ 2

h
M0 +

h

2
M2.



Solution: For ant x > 0, apply Taylor’s theorem (with the Lagrange form of the
remainder term) to the Taylor polynomial (of degree 1) of f centered at x, to get
that for all h > 0 we have

f(x+ h) = f(x) + f ′(x)h+ f ′′(c)
h2

2
,

where c is some number between x and x+h. Dividing through by h and re-arranging,
get

f ′(x) =
f(x+ h)

h
− f(x)

h
− f ′′(c)h

2
.

Taking absolute values of both sides and using the triangle inequality, get

|f ′(x)| ≤ |f(x+ h)|
h

+
|f(x)|
h

+
|f ′′(c)|h

2
.

By hypothesis |f(x+ h)|, |f(x)| ≤M0 and |f ′′(c)| ≤M2, so

|f ′(x)| ≤ 2

h
M0 +

h

2
M2.

(b) (2 points) With the hypothesis as in part (a), deduce that for all x ∈ (0,∞),

|f ′(x)| ≤ 2
√
M0M2.

Solution: The inequality proved in part (a) is valid for any h > 0. We would like
to find the choice of h > 0 that makes the right-hand side of part (a) as small as
possible.

Set g(h) = (2/h)M0 +(h/2)M2. We have g′(h) = −(2/h2)M0 +M2/2. This derivative
is negative on (0, 2

√
M0/M2) and positive on (2

√
M0/M2,∞), so on (0,∞) the

function g has a global minimum at 2
√
M0/M2. Applying the result of part (a) at

this value, get

|f ′(x)| ≤ 2

2
√
M0/M2

M0 +
2
√
M0/M2

2
M2 = 2

√
M0M2.

(c) (2 points) Suppose that f : (0,∞)→ R is twice-differentiable, that f ′′(x) is bounded,
and that f(x)→ 0 as x→∞. Prove that f ′(x)→ 0 as x→∞.

Solution: The results of parts (a) and (b) go through without any change, when
applied to the interval (a,∞) for any a ≥ 0. In other words:

Suppose that f : (a,∞) → R is twice-differentiable, and that there is an
M0,a such that |f(x)| ≤ M0,a and an M2,a such that |f ′′(x)| ≤ M2,a for all
x ∈ (a,∞). Then for all x ∈ (a,∞),

|f ′(x)| ≤ 2
√
M0,aM2,a.



For the given function f of the problem, we may take M2,0 = M for some M that
doesn’t depend on a (we are given that f ′′(x) is bounded). So we can say that for all
x ∈ (a,∞),

|f ′(x)| ≤ 2
√
M0,aM

for some absolute constant M .

Now, given that f(x)→ 0 as x→∞, given ε > 0 there is a such that on (a,∞) we
have |f(x)| < ε2

4M
, so on (a,∞) we may take M0,a = ε2

4M
, and we get that for x > a,

|f ′(x)| ≤ 2
√
M

√
ε2

4M
= ε.

Since ε was arbitrary, this shows that |f ′(x)| → 0 as x→∞.


