
Math 10860, Honors Calculus 2

Homework 10 NAME:

Solutions

1. Use the Bolzano-Weierstrass theorem (every bounded sequence has a convegent sub-
sequence) to prove the first part of the Extreme Value Theorem: if f : [a, b] → R is
continuous, then there is M such that f(x) ≤M for all x ∈ [a, b]. (Hint: Try a proof
by contradiction.)

Solution: Suppose there is no such M . Then for each n ∈ N there is xn ∈ [a, b] with
f(xn) > n.

The sequence (xn)n≥1 is bounded (by a and b), so has (by Bolzano-Weierstrass) a
convergent subsequence (ani

)i≥1. This subsequence converges to a limit, say `, that
is between a and b (if the limit was greater than b, then eventually the terms of the
subsequence would be greater than b, not possible; ditto if the limit was less than a).

f is continuous at ` (by hypothesis), so by the limit of sequences/continuity theorem,
since xni

→ ` we have f(xni
)→ f(`). But clearly f(xni

)→ +∞, a contradiction.

Hence there is an M with f(x) ≤M for all x ∈ [a, b].

2. Decide whether the following sums converge. Explain your reasoning (i.e., which tests
you are using, and why they apply.)

•
∑∞

n=1(−1)n logn
n

.

Solution: Converges; eventually (after n = 3) the nth term (in absolute value) is
decreasing, and tends to 0, so Leibniz’ test works after finitely many terms at the
beginning are thrown out.

•
∑∞

n=1
n2

n!
.

Solution: Converges (in a hurry!) by ratio test.

•
∑∞

n=1
1

(logn)n
.

Solution: Converges; ratio test should work here.

•
∑∞

n=2
1

n(logn)2
.

Solution: Converges; integral test certainly works.
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•
∑∞

n=1
1

n1+1/n .

Solution: Let an = 1/(n1+1/n) and let bn = 1/n (note
∑∞

n=1 bn diverges). We
have

an
bn

=
n

n1+1/n
=

1

n1/n
→ 1 as n→∞

(since limn→∞ n
1/n = limn→∞ e

(logn)/n = e0 = 1), and so, by the limit comparison
test

∑∞
n=1 an diverges.

3. (a) In the sum below, a is positive. Use the ratio test to decide for which values of a
the sum converges, and for which values it diverges:

∞∑
n=1

ann!

nn
.

Solution: We use the ratio test. Let an = (ann!)/(nn). We have

an+1

an
=
an+1(n+ 1)!nn

(n+ 1)n+1ann!
=

a(
1 + 1

n

)n → a

e
as n→∞

(using (1 + 1/n)n → e as n → ∞). So if 0 < a < e the series converges
(limn→∞ an+1/an < 1) and if a > e it diverges.

(b) You should find that the ratio test gives no information at a = e (if you didn’t:
redo part (a)!). When a = e, show that the series diverges, by using a result from
the last homework.

Solution: We know (Homework 9, question 6, part (c))

lim
n→∞

n
√
n!

n
=

1

e
.

Fix ε > 0. There is n0 = n0(ε) such that for n ≥ n0 we have

e n
√
n!

n
≥ 1− ε,

so
enn!

nn
≥ (1− ε)n.

It follows that

∞∑
n=1

enn!

nn
≥

∞∑
n=n0

enn!

nn
≥

∞∑
n=n0

(1− ε)n =
(1− ε)n0

1− (1− ε)
=

(1− ε)n0

ε
.

It’s tempting to say that because of the ε in the denominator, as ε gets smaller
(1− ε)n0/ε gets larger (goes to infinity) so the sum is bounded; unfortunately we
can’t do this, since n0 depends on ε too, and the (1 − ε)n0 may also be getting
very small as ε gets small.
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Instead we need to re-use Homework 9, question 6, this time part (b). We have

n! >
nn

en−1

and so
enn!

nn
>

1

e
.

By the vanishing condition it immediately follows that
∑∞

n=1
enn!
nn diverges.

(c) Decide when
∞∑
n=1

nn

ann!

converges, again using a result from the last homework when the ratio test fails.

Solution: The series converges for a > e by the ratio test, and diverges for a < e.
At a = e an analysis very similar to the last part gives that the series diverges.

4. Leibniz’ alternating series test says that if (an) is a non-increasing sequence of non-
negative numbers, and (an)→ 0 as n→ 0, then

∑∞
n=1(−1)n/n is finite.

Is the hypothesis “non-increasing” necessary, or is the conclusion still valid if we merely
assume that non-negative an tends to 0?

Solution: The hypothesis is necessary. Consider, e.g., the sequence given by

an =

{
1
m

if n odd, say n = 2m+ 1, m = 0, 1, 2, 3, . . .
0 if n even.

Here (an) is a sequence of non-negative numbers, and (an) → 0 as n → 0, but∑∞
n=1(−1)n/n diverges (it is the harmonic sum).

5. (a) Prove that if an ≥ 0 and (an) is not summable (i.e.,
∑
an diverges), then (an/(1 +

an)) is not summable.

Solution: We prove the contrapositive. Suppose (an/(1 + an)) is summable. We
have that an/(1 + an)→ 0 as n→∞ (a necessary condition for summability), so
for ε > 0 there’s n0 such that n > n0 implies

an
1 + an

< ε.

This is equivalent to

an <
ε

1− ε
.

Note that as ε approaches 0 from above, so does ε/(1− ε), so we conclude that
an → 0 as n→∞.

Now compare (an) and (an/(1 + an)). We have

an
an/(1 + an)

= 1 + an → 1 as n→∞,

so by (limit) comparison (an) is summable.
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(b) Is the converse true? If (an/(1 + an)) is not summable (with an > 0), must it
always be the case that (an) is not summable?

Yes. Again we prove the contrapositive, that if (an) is summable then so is
(an/(1 + an)). This is a direct proof by limit comparison:

an
an/(1 + an)

= 1 + an → 1 as n→∞

since, by summability of (an), an → 0 as n→∞.

6. Wally, a slow but persistent worm, starts at one end of a meter-long rubber band and
crawls one centimeter per minute toward the other end. At the end of each minute
Wally rests for a moment. During that moment Karl, the equally persistent keeper
of the band (whose sole purpose in life is to frustrate Wally) stretches the band one
meter. Thus after one minute of crawling, Wally is 1 centimeter from the start and 99
from the finish; but in the moment that Wally rests, Karl stretches the band one meter.
During the stretching Wally maintains his relative position, 1% from the start and 99%
from the finish. So at the end of Wally’s moment of rest, he is 2cm from the starting
point and 198cm from his goal. After Wally crawls for another minute the score is 3cm
traveled and 197 to go; but then Karl stretches one more meter (from 2 meters to 3
meters), and Wally’s distances become 4.5cm travelled, and 295.5cm to go. And so on.

Does Wally ever get to the end of the band???

He keeps moving, but the goal seems to be moving away from him, faster than he
moves. (We’re assuming here infinite longevity for Karl and Wally, infinite elasticity of
the band, and an infinitely tiny worm.)

Solution: YES!

In one time unit, Wally traverses 1/100 of the length of the band. During the stretching,
he doesn’t change his relative progress: he has still covered 1/100 of the band. In
the next time unit, he covers an addition proportion 1/200 of the band (1cm out of
2m), so he has now covered a total proportion of 1/100 + 1/200 of the band. Again,
this doesn’t change during stretching. After the next time unit (in which he covers
an additional 1cm out of 3m, 1/300 of the band) he has covered a total proportion
1/100 + 1/200 + 1/300. In general, after n time units, he has covered a proportion

1

100
+

1

200
+ · · ·+ 1

100n
=
Hn

100

of the band. Because (Hn)→∞, there is an n for which Hn ≥ 100 for the first time;
at this point Wally has completed his traversal of the band.

Note that n ≈ 2.6× 1043(!)

7. Define the 7-depleted harmonic number H
(7)
n to be the sum of the reciprocals of the

natural numbers from 1 to n, except those n that have a 7 in their usual decimal
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representation. For example, H
(7)
8 = 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

8
. (There is no standard

name or notation for this number).

Does (H
(7)
n )∞n=1 converge or diverge?

Solution: The sum, surprisingly, converges. It is sometimes referred to as the Kempner
sum. See https://en.wikipedia.org/wiki/Kempner_series for a discussion.

Here’s a proof of the divergence:

• There are 8 one-digit natural numbers that have no 7 in their base-10 representation.
Each of these contributes at most 1 to the sum, so the total contribution from
one-digit numbers is at most 8.

• There are 8× 9 two-digit natural numbers that have no 7 in their base-10 repre-
sentation — 8 options for the first digit (1, 2, 3, 4, 5, 6, 8 or 9) and 9 options
for the second (0, 1, 2, 3, 4, 5, 6, 8 or 9). Each of these contributes at most 1/10
to the sum (10 is the smallest two-digit number), so the total contribution from
two-digit numbers is at most 8× 9/10

• In general there are 8 × 9n−1 n-digit natural numbers that have no 7 in their
base-10 representation — 8 options for the first digit and 9 options for each of the
remaining n− 1 digits. Each of these contributes at most 1/10n−1 to the sum, so
the total contribution from two-digit numbers is at most 8× 9n−1/10n−1.

It follows that s9···9, where there are n 9’s, is at most

8 + 8× 9

10
+ 8

(
9

10

)2

+ · · ·+ 8

(
9

10

)n−1
.

This partial sum is bounded above by

∞∑
n=0

8

(
9

10

)n
=

8

1− 9
10

= 80,

independent of n.

So the partial sums are increasing and bounded above (by 80), and the 7-depleted
Harmonic sum converges (and has sum at most 80).

Here’s the intuition: most large numbers have all 10 digits in them, so most natural
numbers are being stripped from the Harmonic sum to get the depleted Harmonic sum.

More generally, if A is any natural number, then we can define the A-depleted harmonic
number H

(A)
n to be the sum of the reciprocals of the natural numbers from 1 to n,

except those n that have the string A appearing consecutively in their usual decimal
representation. Bu essentially the same proof, done more carefully, we get that the
sequence (HA

n ) is summable!
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8. (a) Suppose that (an)∞n=1 is weakly decreasing, with an ≥ 0, and that
∑∞

n=1 an is finite.
The vanishing condition says that limn→∞ an = 0. Prove something stronger:
limn→∞ nan = 0.

Solution: Given ε > 0, there is N such that n > m ≥ N implies that

|sn − sN | = an + an−1 + · · ·+ am < ε/2

(the Cauchy criterion for convergence). Apply this with m = N to get

an + an−1 + · · ·+ aN+1 < ε/2

Now using that the sequence is non-decreasing, we get

an + an−1 + · · ·+ aN+1 ≥ (n−N)an = nan −Nan,

so that for all n > N ,

nan −Nan < ε/2 or nan < ε/2 +Nan.

Now an → 0 by the vanishing criterion, so there is M > 0 such that n ≥M implies
an < ε/(2N). So for n ≥ max{N,M}, have

nan < ε/2 +Nan < ε/2 + ε/2 = ε.

Since ε > 0 was arbitrary, we have shown that nan → 0.

(b) For each α > 0, give an example of a sequence (an)∞n=1 that is weakly decreasing,
with an ≥ 0, with

∑∞
n=1 an is finite, but with limn→∞ n

1+αan = +∞ (so, the result
you proved in part (a) can’t be improved upon).

Solution: Take an = 1/n1+α/2. (It is non-negative, weakly decreasing to 0, and
summable by the integral test; but limn→∞ n

1+αan = limn→∞ n
α/2 = +∞.)

(c) Is the hypothesis “weakly decreasing” necessary?

Solution: Yes. For example, consider the sequence given by

an =

{
1
n

if n = 1, 4, 9, 16, 25, 36, . . .
0 otherwise.

Here an ≥ 0, and
∑∞

n=1 an = 1 + 1/4 + 1/9 + · · · is finite. But limn→∞ nan does
not exist: for all n that is not a perfect square, nan = 0, while for all n that is a
perfect square, nan = 1.
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