Math 10860, Honors Calculus 2

Homework 4 NAME:

Solutions

1. Decide whether or not the following improper integrals exist.

fO 1+a:
dx

Solution: Certainly fo T exists for all N > 0 (integrand is bounded on

those intervals). In particular, fol \/% exists, so that leaves us with considering

foo dz
1 V1423

We have
1 1
0<
Vv1+ x3 Vv
for all z > 1. Smce f1 —= exists (), from the comparison result proved in class

we get that [~ \/7 ex1sts and so [ \/ﬁ exists.
(x) Why? Since the derivative of —2z71/2 is - > by FTOC we have

N
d 2
T o N2 hox 129 2 49 as N — oo,

L VB VN

O T 1+:v
Solution Because 1 / (xy/1 + ) is unbounded near 0, the integral exists iff both
01 = and v S exist.

There is no problem Wlth = \/1Tx However, on the interval [e, 1] (for any € > 0)

we have
V2

—>-2>0
V1 +x
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Mimicing a proof we saw in class, the latter mtegral can be made arbltrarﬂy large
by choosing e small enough (in particular, f1 Jan & > n/2), and so also fg - \/1Ta:
can be made arbltrarlly large.

dx

Conclusion: fo — \/ﬁ doesn’t exist, and so neither does fo Py
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2. Suppose ffooo f exists. Let h,g be functions with A(N) — —occ and g(N) — +o0 as

N — 4o00. Prove that
g(N)
lim f
exists and equals ffooo f.

Solution: Give € > 0 there is ng > 0 such that for all N > ny we have

[re([ref o)

Because g(N) — oo as N — oo, there is m > 0 such that for all N > m, g(N) > ny,

and so o) . N
/0 fe(/o f—e,/o f+5).

Since this was true for arbitrary € > 0, we conclude that

g(N) 00
/ f%/ f as N — oo.
0 0

By a similar argument we get

0 0
/ f —>/ f as N — .
h(N) —o0

These two facts together show that limpy_,qo f:(%) [ exists and equals [*_ f.

3. Check that each of the following functions f is actually invertible, and find (a fairly
simple expression for) f~! for each. Specify the domain and range of f~! in each case.

(a) fl£)=a+1.

Solution: f is increasing on R, so is invertible. f clearly has range R, so both
the domain and range of inverse f~! is R. Evidently f~! is given by

fla) = Vo L.

x  if x is rational
—x if x is irrational

®) fe) = {

Solution: f neither increasing nor decreasing on R. However, it is injective: if
x # y, then either

e 2,y € Q, in which case f(z) # f(y) (since f(z) =, f(y) =), or
e x,y ¢ Q, in which case f(z) # f(y) (since f(z) = —=z, f(y) = —y), or

e one of x,y is rational, the other irrational, in which case f(x) # f(y) (since
one of z,y is rational, the other irrational).
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So f is invertible. The range of f is all of R, so both the domain and range of
inverse f~! is R. Evidently f~!is just f itself.

(¢) f(z) =z + [z]. (Remember that [z] is the largest integer less than or equal to z.)

Solution: f is increasing on R, so is invertible (and the range of the inverse is R).
It is continuous on the intervals of the form [n,n + 1), n € Z, where it takes on
the range of values [2n,2n + 1). So the range of f (and hence the domain of f~!)
is Upez[2n,2n + 1).

On the interval [2n,2n + 1), the inverse increases linearly along [n,n + 1), so the
inverse can be expressed as follows:

fx)=2—n ifz¢c[2n,2n+1) for some n € Z.

(This may be expressible compactly in terms of the floor function [z], but I didn’t
think about it).

(d) f(z) =2, —1 <z <L

Solution: f is increasing on (—1,1) (it is differentiable, with derivative z* +
1/(x? — 1)?, which is always positive). Thinking about limits as x approaches —1
from above and 1 from below, we get that the range is R, So f is invertible with
domain of f~! being R, range (—1,1).

To find an expression for f~!(z), set (for convenience) f~'(z) = y. We have
fly)=z,s0y/(1 —y*) =z or xy>+y—=x, or

1+ VI da?

2x

Y

Which of these two candidates for f~! is the right one? We know, for example,
that f(1/2) =2/3, so f~1(2/3) = 1/2. Now

—1+4/1+4(2/3)2 -3+5
2(2/3) 4

By taking the “+” in + we get 1/2, but by taking the “—” we get —2; so we
should take the “+”.
It’s tempting to now say “The inverse of f is given by

_ -1+ 1+ 42?2,

2

f(2)

Unfortunately, this expression is not defined at x = 0, while the inverse is (and
takes value 0). Everywhere else this expression is fine; so the formally correct

answer 1S
_ 2 .
o e VA v21+4:v if £ #£0
T

f_l(“"):{ 0 ifz=0.

4. Suppose f and g are increasing.



(a)

Is f + g necessarily increasing?

Solution: Yes. Suppose z,y are both in the domain of f 4 g (so both z,y are
both in the domains of both f and g separately) with x < y. We have f(x) < f(y)

and g(x) < g(y) (by properties of f and g) so (f + g)(z) < (f + g)(¥)-
Is fg necessarily increasing?

Solution: Not necessarily; consider f(x) = g(x) = z on R.

Is f o g necessarily increasing?

Solution: Yes. Suppose x,y are both in the domain of f o g (so both x,y are in
the domain g, and both f(x), f(y) are in the domain of f), with x < y. We have

9(x) < g(y) and so (f o g)(x) = f(g(x)) < f9(y)) = (f 2 9)(y).

5. On which intervals [a, b] will the following functions by one-to-one?

(a)

f(x) = z* — 322

Solution: f is continuous and differentiable on R. f/(z) = 3z? — 6z, and this
equals 0 at z = 0,2. By examining test points in the intervals (—o0,0), (0,2) and
(2,00) we find that f’ > 0 on the first, so f increasing, f’ < 0 on the second, so f
decreasing, and f’ > 0 on the third, so f increasing.

Since f is continuous, we can add the end points to the various intervals to find that
the mazimal intervals on which f is monotone, and so one-to-one, are A = (—o0, 0],
B =10,2] and C' = [2,00). But of course, f is one-to-one on any subinterval of any
of A, B, C, so (remembering that the question asked about finite closed intervals)
the final answer is:

The intervals [a, b] on which f is one-to-one are those intervals [a, b] that
are completely contained in one of A, B, C' above: —oco < a < b <0, or
0<a<b<lor2<a<b< 0.

fl2) = (1422,

Solution: f is continuous and differentiable on R. f/(z) = —2x(1 + 2*)~2, and
this equals 0 at z = 0. By examining test points in the intervals (—oo,0) and
(0, 00) we find that f’ > 0 on the first, so f increasing, and f’ < 0 on the second,
so f decreasing.

Since f is continuous, we can add the end points to the intervals to find that the
mazximal intervals on which f is monotone, and so one-to-one, are A = (—o0, 0]
and B = [0,00). But of course, f is one-to-one on any subinterval of either of A,
B, so (remembering that the question asked about finite closed intervals) the final
answer is:

The intervals [a, b] on which f is one-to-one are those intervals [a, b] that
are completely contained in one of A, B above: —oco < a < b < 0, or
0<a<b< .



6. Find a formula for (f~')”(x), and decide under what circumstances the derivative
actually exists.

Solution: For f~!(z) to be twice-differentiable, it is necessary for it to be differentiable.
We know that this occurs iff f/(f~!(z)) exists and is not 0, in which case

1
=)
Under what circumstances is this expression differentiable? We know from our study of
the derivative in the fall that 1/g is differentiable at x iff ¢ is differentiable at z, and
g(z) # 0. Here, we know already that f'(f~!(z)) # 0, so it is only necessary to further

assume that f”(f~!(x)) exists. Under that assumption, an application of chain rule
and reciprocal rule yields

(1N (e V)~ @)~
5@ = (remm) = T FE@F  PF @)

The conditions that were necessary for this were

(f)(@) =

o f'(f71(x)) exists and is not 0 and
o f"(f1(x)) exists.
These are easily seen to be sufficient to allow the argument to run through.

7. Suppose that f : [a,b] — [c,d] is (strictly) increasing, and integrable on [a,b]. Prove
that f~!: [c,d] — [a,]] is integrable on [c, d], and that in fact

/abf+/cdf—1:bd—ac.

Solution (sketch): Consider a partition P = (to,...,t,) (with a =ty <t; < --- <

t, = b) of [a,b]. Associated with this is a partition P' = (f(to),..., f(t,) (with
= f(to) < f(tr) <--- < f(tn) =d) of [c,d].

From a picture, it is clear that the rectangles that make up the lower Darboux sum

L(f, P) together with the rectangles that make up the upper Darboux sum U(f~!, P'),

can be used to cover all of the square [0, b] x [0, d], except for an initial [0, a] x [0, 0]

square. In other words:

L(f,P)+U(f ', P)=bd— ac

This can be made formal quite easily, using that f is increasing.

But also, the same argument shows

U(f,P)+ L(f', P") = bd — ac.



So we have
b
L(f, P) = bd — ac — U(f~, P') < / f<bd—ac—L(f~,P') < U(f, P)

for every partition P of [a,b]. In particular, for any € > 0, since there is a partition P
of [a,b] with U(f, P) — L(f, P) < €, there is a partition P’ of [c¢, d] with
(bd —ac—L(f~,P)) — (bd—ac—U(f"", P)) <.,

or

U(f~,P)—L(f ", P)<e.
This shows that f~! is integrable on [c, d].

For the value of the integral, we have

b
bd —ac—U(f, P) S/ f<bd—ac— L(f*,P)

or b
L(f7,P)< (/ f> —bd —ac < U(f™, P,

for all partitions of [c,d] of the form P’. But in fact all partitions of [c,d] can be
expressed as P’, for some partition P on [a, b] (this easy fact uses invertibility of f, and
the fact that f is increasing). This forces

[ro=([7)

. Fix a > 0. Here is a scheme for defining a”, for every rational x:

as claimed.

Step 1 Set a® = 1 and set a" = a - a"! for n € N (we did this as an example of a
recursive definition).

Step 2 For n € N define a'/™ to be the unique positive x satisfying 2" = a (we did
this as an example of Intermediate Value Theorem).

Step 3 For positive rational r = m/n (m,n € N), set a” = (a*/™)".

Step 4 For negative rational r, set " = 1/(a™").

The only questionable step is Step 3. A given rational has many representations of
the form m/n, m,n € N; for example 2/3 = 8/12 = 100/150.

Check that the definition given in Step 3 is in fact well-defined: if m/n and s/t are
both representations of the same rational r, then Step 3 gives the same value for a”,
whichever representation we use.



Solution: Let m,n, s and t be for natural numbers satisfying m/n = s/t. Our goal is
to show that
(@ = @y, ()

where a'/" is that unique positive number such that (a'/")" = 1 and @'/* is that unique
positive number such that (a'/*)* = 1.

1/n

Since the function “raise z to the ntth power” is one-to-one on the positives (it is
increasing in), we get that (x) is equivalent to

((@/™™)™ = (@)™, ()

Now we need a general proposition about powers: for any real positive x, and any

natural numbers y, z, we have
(x¥)* = ¥,

We prove this, for each fixed y, by induction on z. The base case z = 1 is clear (if
states (z¥)! = x¥). For the induction step we have

(V)T = (@¥) (x¥)® (def. of ptt! for ¢ € N)

= (a¥)(2¥*) (inductive hypothesis)

= 2¥"¥* (basic property proved in hwork last semester)
LD

Applying to both sides of (x%) we find that (x*) is equivalent to
(al/n)mnt _ (al/t)snt’
which, by a reverse application of the general proposition is equivalent to
(@)™ = (@y)”
which by definition is equivalent to
mt sn

a =a

But this is evidently true, since m/n = s/t implies mt = sn.



