Math 10860, Honors Calculus 2

Solutions

1. Decide whether or not the following improper integrals exist.
(a) $\int_{0}^{\infty} \frac{d x}{\sqrt{1+x^{3}}}$.

Solution: Certainly $\int_{0}^{N} \frac{d x}{\sqrt{1+x^{3}}}$ exists for all $N \geq 0$ (integrand is bounded on those intervals). In particular, $\int_{0}^{1} \frac{d x}{\sqrt{1+x^{3}}}$ exists, so that leaves us with considering $\int_{1}^{\infty} \frac{d x}{\sqrt{1+x^{3}}}$.
We have

$$
0 \leq \frac{1}{\sqrt{1+x^{3}}} \leq \frac{1}{\sqrt{x^{3}}}
$$

for all $x \geq 1$. Since $\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}}}$ exists (\star), from the comparison result proved in class we get that $\int_{1}^{\infty} \frac{d x}{\sqrt{1+x^{3}}}$ exists, and so $\int_{0}^{\infty} \frac{d x}{\sqrt{1+x^{3}}}$ exists.
(\star) Why? Since the derivative of $-2 x^{-1 / 2}$ is $\frac{1}{\sqrt{x^{3}}}$, by FTOC we have

$$
\int_{1}^{N} \frac{d x}{\sqrt{x^{3}}}=-2 N^{-1 / 2}+2 \times 1^{-1 / 2}=2-\frac{2}{\sqrt{N}} \rightarrow 2 \quad \text { as } N \rightarrow \infty
$$

(b) $\int_{0}^{\infty} \frac{d x}{x \sqrt{1+x}}$.

Solution: Because $1 /(x \sqrt{1+x})$ is unbounded near 0 , the integral exists iff both $\int_{0}^{1} \frac{d x}{x \sqrt{1+x}}$ and $\int_{1}^{\infty} \frac{d x}{x \sqrt{1+x}}$ exist.
There is no problem with $\int_{1}^{\infty} \frac{d x}{x \sqrt{1+x}}$. However, on the interval $[\varepsilon, 1]$ (for any $\varepsilon>0$) we have

$$
\frac{\sqrt{2}}{x \sqrt{1+x}} \geq \frac{1}{x} \geq 0
$$

so

$$
\int_{\varepsilon}^{1} \frac{d x}{x \sqrt{1+x}} \geq \int_{\varepsilon}^{1} \frac{d x}{x}
$$

Mimicing a proof we saw in class, the latter integral can be made arbitrarily large by choosing ε small enough (in particular, $\int_{1 / 2^{n}}^{1} \frac{d x}{x} \geq n / 2$), and so also $\int_{\varepsilon}^{1} \frac{d x}{x \sqrt{1+x}}$ can be made arbitrarily large.
Conclusion: $\int_{0}^{1} \frac{d x}{x \sqrt{1+x}}$ doesn't exist, and so neither does $\int_{0}^{\infty} \frac{d x}{x \sqrt{1+x}}$.
2. Suppose $\int_{-\infty}^{\infty} f$ exists. Let h, g be functions with $h(N) \rightarrow-\infty$ and $g(N) \rightarrow+\infty$ as $N \rightarrow+\infty$. Prove that

$$
\lim _{N \rightarrow \infty} \int_{h(N)}^{g(N)} f
$$

exists and equals $\int_{-\infty}^{\infty} f$.
Solution: Give $\varepsilon>0$ there is $n_{0}>0$ such that for all $N>n_{0}$ we have

$$
\int_{0}^{N} f \in\left(\int_{0}^{\infty} f-\varepsilon, \int_{0}^{\infty} f+\varepsilon\right) .
$$

Because $g(N) \rightarrow \infty$ as $N \rightarrow \infty$, there is $m>0$ such that for all $N>m, g(N)>n_{0}$, and so

$$
\int_{0}^{g(N)} f \in\left(\int_{0}^{\infty} f-\varepsilon, \int_{0}^{\infty} f+\varepsilon\right)
$$

Since this was true for arbitrary $\varepsilon>0$, we conclude that

$$
\int_{0}^{g(N)} f \rightarrow \int_{0}^{\infty} f \quad \text { as } \quad N \rightarrow \infty
$$

By a similar argument we get

$$
\int_{h(N)}^{0} f \rightarrow \int_{-\infty}^{0} f \quad \text { as } \quad N \rightarrow \infty
$$

These two facts together show that $\lim _{N \rightarrow \infty} \int_{h(N)}^{g(N)} f$ exists and equals $\int_{-\infty}^{\infty} f$.
3. Check that each of the following functions f is actually invertible, and find (a fairly simple expression for) f^{-1} for each. Specify the domain and range of f^{-1} in each case.
(a) $f(x)=x^{3}+1$.

Solution: f is increasing on \mathbb{R}, so is invertible. f clearly has range \mathbb{R}, so both the domain and range of inverse f^{-1} is \mathbb{R}. Evidently f^{-1} is given by

$$
f^{-1}(x)=\sqrt[3]{x-1}
$$

(b) $f(x)=\left\{\begin{array}{cc}x & \text { if } x \text { is rational } \\ -x & \text { if } x \text { is irrational }\end{array}\right.$

Solution: f neither increasing nor decreasing on \mathbb{R}. However, it is injective: if $x \neq y$, then either

- $x, y \in \mathbb{Q}$, in which case $f(x) \neq f(y)$ (since $f(x)=x, f(y)=y)$, or
- $x, y \notin \mathbb{Q}$, in which case $f(x) \neq f(y)$ (since $f(x)=-x, f(y)=-y$), or
- one of x, y is rational, the other irrational, in which case $f(x) \neq f(y)$ (since one of x, y is rational, the other irrational).

So f is invertible. The range of f is all of \mathbb{R}, so both the domain and range of inverse f^{-1} is \mathbb{R}. Evidently f^{-1} is just f itself.
(c) $f(x)=x+[x]$. (Remember that $[x]$ is the largest integer less than or equal to x.)

Solution: f is increasing on \mathbb{R}, so is invertible (and the range of the inverse is \mathbb{R}). It is continuous on the intervals of the form $[n, n+1), n \in \mathbb{Z}$, where it takes on the range of values $\left[2 n, 2 n+1\right.$). So the range of f (and hence the domain of f^{-1}) is $\cup_{n \in \mathbb{Z}}[2 n, 2 n+1)$.
On the interval $[2 n, 2 n+1)$, the inverse increases linearly along $[n, n+1)$, so the inverse can be expressed as follows:

$$
f^{-1}(x)=x-n \quad \text { if } x \in[2 n, 2 n+1) \text { for some } n \in \mathbb{Z}
$$

(This may be expressible compactly in terms of the floor function $[x]$, but I didn't think about it).
(d) $f(x)=\frac{x}{1-x^{2}},-1<x<1$.

Solution: f is increasing on $(-1,1)$ (it is differentiable, with derivative $x^{2}+$ $1 /\left(x^{2}-1\right)^{2}$, which is always positive). Thinking about limits as x approaches -1 from above and 1 from below, we get that the range is \mathbb{R}, So f is invertible with domain of f^{-1} being \mathbb{R}, range $(-1,1)$.
To find an expression for $f^{-1}(x)$, set (for convenience) $f^{-1}(x)=y$. We have $f(y)=x$, so $y /\left(1-y^{2}\right)=x$ or $x y^{2}+y-x$, or

$$
y=\frac{-1 \pm \sqrt{1+4 x^{2}}}{2 x} .
$$

Which of these two candidates for f^{-1} is the right one? We know, for example, that $f(1 / 2)=2 / 3$, so $f^{-1}(2 / 3)=1 / 2$. Now

$$
\frac{-1 \pm \sqrt{1+4(2 / 3)^{2}}}{2(2 / 3)}=\frac{-3 \pm 5}{4}
$$

By taking the "+" in \pm we get $1 / 2$, but by taking the " - " we get -2 ; so we should take the "+".
It's tempting to now say "The inverse of f is given by

$$
f^{-1}(x)=\frac{-1+\sqrt{1+4 x^{2}}}{2 x}
$$

Unfortunately, this expression is not defined at $x=0$, while the inverse is (and takes value 0). Everywhere else this expression is fine; so the formally correct answer is

$$
f^{-1}(x)=\left\{\begin{array}{cl}
\frac{-1+\sqrt{1+4 x^{2}}}{2 x} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

4. Suppose f and g are increasing.
(a) Is $f+g$ necessarily increasing?

Solution: Yes. Suppose x, y are both in the domain of $f+g$ (so both x, y are both in the domains of both f and g separately) with $x<y$. We have $f(x)<f(y)$ and $g(x)<g(y)$ (by properties of f and g) so $(f+g)(x)<(f+g)(y)$.
(b) Is $f g$ necessarily increasing?

Solution: Not necessarily; consider $f(x)=g(x)=x$ on \mathbb{R}.
(c) Is $f \circ g$ necessarily increasing?

Solution: Yes. Suppose x, y are both in the domain of $f \circ g$ (so both x, y are in the domain g, and both $f(x), f(y)$ are in the domain of f), with $x<y$. We have $g(x)<g(y)$ and so $(f \circ g)(x)=f(g(x))<f(g(y))=(f \circ g)(y)$.
5. On which intervals $[a, b]$ will the following functions by one-to-one?
(a) $f(x)=x^{3}-3 x^{2}$.

Solution: f is continuous and differentiable on \mathbb{R}. $f^{\prime}(x)=3 x^{2}-6 x$, and this equals 0 at $x=0,2$. By examining test points in the intervals $(-\infty, 0),(0,2)$ and $(2, \infty)$ we find that $f^{\prime}>0$ on the first, so f increasing, $f^{\prime}<0$ on the second, so f decreasing, and $f^{\prime}>0$ on the third, so f increasing.
Since f is continuous, we can add the end points to the various intervals to find that the maximal intervals on which f is monotone, and so one-to-one, are $A=(-\infty, 0]$, $B=[0,2]$ and $C=[2, \infty)$. But of course, f is one-to-one on any subinterval of any of A, B, C, so (remembering that the question asked about finite closed intervals) the final answer is:

The intervals $[a, b]$ on which f is one-to-one are those intervals $[a, b]$ that are completely contained in one of A, B, C above: $-\infty<a \leq b \leq 0$, or $0 \leq a \leq b \leq 1$ or $2 \leq a \leq b<\infty$.
(b) $f(x)=\left(1+x^{2}\right)^{-1}$.

Solution: f is continuous and differentiable on $\mathbb{R} . f^{\prime}(x)=-2 x\left(1+x^{2}\right)^{-2}$, and this equals 0 at $x=0$. By examining test points in the intervals $(-\infty, 0)$ and $(0, \infty)$ we find that $f^{\prime}>0$ on the first, so f increasing, and $f^{\prime}<0$ on the second, so f decreasing.
Since f is continuous, we can add the end points to the intervals to find that the maximal intervals on which f is monotone, and so one-to-one, are $A=(-\infty, 0$] and $B=[0, \infty)$. But of course, f is one-to-one on any subinterval of either of A, B, so (remembering that the question asked about finite closed intervals) the final answer is:

The intervals $[a, b]$ on which f is one-to-one are those intervals $[a, b]$ that are completely contained in one of A, B above: $-\infty<a \leq b \leq 0$, or $0 \leq a \leq b<\infty$.
6. Find a formula for $\left(f^{-1}\right)^{\prime \prime}(x)$, and decide under what circumstances the derivative actually exists.

Solution: For $f^{-1}(x)$ to be twice-differentiable, it is necessary for it to be differentiable. We know that this occurs iff $f^{\prime}\left(f^{-1}(x)\right)$ exists and is not 0 , in which case

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Under what circumstances is this expression differentiable? We know from our study of the derivative in the fall that $1 / g$ is differentiable at x iff g is differentiable at x, and $g(x) \neq 0$. Here, we know already that $f^{\prime}\left(f^{-1}(x)\right) \neq 0$, so it is only necessary to further assume that $f^{\prime \prime}\left(f^{-1}(x)\right)$ exists. Under that assumption, an application of chain rule and reciprocal rule yields
$\left(f^{-1}\right)^{\prime \prime}(x)=\left(\frac{1}{\left(f^{\prime} \circ f^{-1}\right)(x)}\right)^{\prime}=\frac{-\left(f^{\prime} \circ f^{-1}\right)^{\prime}(x)}{\left(f^{\prime} \circ f^{-1}\right)^{2}(x)}=\frac{-f^{\prime \prime}\left(f^{-1}(x)\right)\left(f^{-1}\right)^{\prime}(x)}{\left(f^{\prime}\left(f^{-1}(x)\right)\right)^{2}}=\frac{-f^{\prime \prime}\left(f^{-1}\right)(x)}{\left(f^{\prime}\left(f^{-1}(x)\right)\right)^{3}}$.
The conditions that were necessary for this were

- $f^{\prime}\left(f^{-1}(x)\right)$ exists and is not 0 and
- $f^{\prime \prime}\left(f^{-1}(x)\right)$ exists.

These are easily seen to be sufficient to allow the argument to run through.
7. Suppose that $f:[a, b] \rightarrow[c, d]$ is (strictly) increasing, and integrable on $[a, b]$. Prove that $f^{-1}:[c, d] \rightarrow[a, b]$ is integrable on $[c, d]$, and that in fact

$$
\int_{a}^{b} f+\int_{c}^{d} f^{-1}=b d-a c
$$

Solution (sketch): Consider a partition $P=\left(t_{0}, \ldots, t_{n}\right)$ (with $a=t_{0}<t_{1}<\cdots<$ $t_{n}=b$) of $[a, b]$. Associated with this is a partition $P^{\prime}=\left(f\left(t_{0}\right), \ldots, f\left(t_{n}\right)\right.$ (with $\left.c=f\left(t_{0}\right)<f\left(t_{1}\right)<\cdots<f\left(t_{n}\right)=d\right)$ of $[c, d]$.
From a picture, it is clear that the rectangles that make up the lower Darboux sum $L(f, P)$ together with the rectangles that make up the upper Darboux sum $U\left(f^{-1}, P^{\prime}\right)$, can be used to cover all of the square $[0, b] \times[0, d]$, except for an initial $[0, a] \times[0, b]$ square. In other words:

$$
L(f, P)+U\left(f^{-1}, P^{\prime}\right)=b d-a c
$$

This can be made formal quite easily, using that f is increasing.
But also, the same argument shows

$$
U(f, P)+L\left(f^{-1}, P^{\prime}\right)=b d-a c
$$

So we have

$$
L(f, P)=b d-a c-U\left(f^{-1}, P^{\prime}\right) \leq \int_{a}^{b} f \leq b d-a c-L\left(f^{-1}, P^{\prime}\right) \leq U(f, P)
$$

for every partition P of $[a, b]$. In particular, for any $\varepsilon>0$, since there is a partition P of $[a, b]$ with $U(f, P)-L(f, P)<\varepsilon$, there is a partition P^{\prime} of $[c, d]$ with

$$
\left(b d-a c-L\left(f^{-1}, P^{\prime}\right)\right)-\left(b d-a c-U\left(f^{-1}, P^{\prime}\right)\right)<\varepsilon
$$

or

$$
U\left(f^{-1}, P^{\prime}\right)-L\left(f^{-1}, P^{\prime}\right)<\varepsilon
$$

This shows that f^{-1} is integrable on $[c, d]$.
For the value of the integral, we have

$$
b d-a c-U\left(f^{-1}, P^{\prime}\right) \leq \int_{a}^{b} f \leq b d-a c-L\left(f^{-1}, P^{\prime}\right)
$$

or

$$
L\left(f^{-1}, P^{\prime}\right) \leq\left(\int_{a}^{b} f\right)-b d-a c \leq U\left(f^{-1}, P^{\prime}\right)
$$

for all partitions of $[c, d]$ of the form P^{\prime}. But in fact all partitions of $[c, d]$ can be expressed as P^{\prime}, for some partition P on $[a, b]$ (this easy fact uses invertibility of f, and the fact that f is increasing). This forces

$$
\int_{c}^{d} f^{-1}=\left(\int_{a}^{b} f\right)-b d-a c
$$

as claimed.
8. Fix $a>0$. Here is a scheme for defining a^{x}, for every rational x :

Step 1 Set $a^{0}=1$ and set $a^{n}=a \cdot a^{n-1}$ for $n \in \mathbb{N}$ (we did this as an example of a recursive definition).
Step 2 For $n \in \mathbb{N}$ define $a^{1 / n}$ to be the unique positive x satisfying $x^{n}=a$ (we did this as an example of Intermediate Value Theorem).
Step 3 For positive rational $r=m / n(m, n \in \mathbb{N})$, set $a^{r}=\left(a^{1 / m}\right)^{n}$.
Step 4 For negative rational r, set $a^{r}=1 /\left(a^{-r}\right)$.
The only questionable step is Step 3. A given rational has many representations of the form $m / n, m, n \in \mathbb{N}$; for example $2 / 3=8 / 12=100 / 150$.
Check that the definition given in Step $\mathbf{3}$ is in fact well-defined: if m / n and s / t are both representations of the same rational r, then Step $\mathbf{3}$ gives the same value for a^{r}, whichever representation we use.

Solution: Let m, n, s and t be for natural numbers satisfying $m / n=s / t$. Our goal is to show that

$$
\left(a^{1 / n}\right)^{m}=\left(a^{1 / t}\right)^{s}
$$

where $a^{1 / n}$ is that unique positive number such that $\left(a^{1 / n}\right)^{n}=1$ and $a^{1 / t}$ is that unique positive number such that $\left(a^{1 / t}\right)^{t}=1$.
Since the function "raise x to the $n t$ th power" is one-to-one on the positives (it is increasing in), we get that (\star) is equivalent to

$$
\left(\left(a^{1 / n}\right)^{m}\right)^{n t}=\left(\left(a^{1 / t}\right)^{s}\right)^{n t} . \quad(\star \star)
$$

Now we need a general proposition about powers: for any real positive x, and any natural numbers y, z, we have

$$
\left(x^{y}\right)^{z}=x^{y z}
$$

We prove this, for each fixed y, by induction on z. The base case $z=1$ is clear (if states $\left(x^{y}\right)^{1}=x^{y}$. For the induction step we have

$$
\begin{aligned}
\left(x^{y}\right)^{z+1} & =\left(x^{y}\right)\left(x^{y}\right)^{z} \quad\left(\text { def. of } p^{q+1} \text { for } q \in \mathbb{N}\right) \\
& =\left(x^{y}\right)\left(x^{y z}\right) \quad \text { (inductive hypothesis) } \\
& =x^{y+y z} \quad \text { (basic property proved in hwork last semester) } \\
& =x^{y(z+1)} .
\end{aligned}
$$

Applying to both sides of $(\star \star)$ we find that $(\star \star)$ is equivalent to

$$
\left(a^{1 / n}\right)^{m n t}=\left(a^{1 / t}\right)^{s n t},
$$

which, by a reverse application of the general proposition is equivalent to

$$
\left(\left(a^{1 / n}\right)^{n}\right)^{m t}=\left(\left(a^{1 / t}\right)^{t}\right)^{s n}
$$

which by definition is equivalent to

$$
a^{m t}=a^{s n}
$$

But this is evidently true, since $m / n=s / t$ implies $m t=s n$.

