
Math 10860, Honors Calculus 2

Homework 4 NAME:

Solutions

1. Decide whether or not the following improper integrals exist.

(a)
∫∞
0

dx√
1+x3 .

Solution: Certainly
∫ N

0
dx√
1+x3 exists for all N ≥ 0 (integrand is bounded on

those intervals). In particular,
∫ 1

0
dx√
1+x3 exists, so that leaves us with considering∫∞

1
dx√
1+x3 .

We have

0 ≤ 1√
1 + x3

≤ 1√
x3

for all x ≥ 1. Since
∫∞
1

1√
x3

exists (?), from the comparison result proved in class

we get that
∫∞
1

dx√
1+x3 exists, and so

∫∞
0

dx√
1+x3 exists.

(?) Why? Since the derivative of −2x−1/2 is 1√
x3

, by FTOC we have∫ N

1

dx√
x3

= −2N−1/2 + 2× 1−1/2 = 2− 2√
N
→ 2 as N →∞.

(b)
∫∞
0

dx
x
√
1+x

.

Solution: Because 1/(x
√

1 + x) is unbounded near 0, the integral exists iff both∫ 1

0
dx

x
√
1+x

and
∫∞
1

dx
x
√
1+x

exist.

There is no problem with
∫∞
1

dx
x
√
1+x

. However, on the interval [ε, 1] (for any ε > 0)
we have √

2

x
√

1 + x
≥ 1

x
≥ 0

so ∫ 1

ε

dx

x
√

1 + x
≥
∫ 1

ε

dx

x
.

Mimicing a proof we saw in class, the latter integral can be made arbitrarily large
by choosing ε small enough (in particular,

∫ 1

1/2n
dx
x
≥ n/2), and so also

∫ 1

ε
dx

x
√
1+x

can be made arbitrarily large.

Conclusion:
∫ 1

0
dx

x
√
1+x

doesn’t exist, and so neither does
∫∞
0

dx
x
√
1+x

.
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2. Suppose
∫∞
−∞ f exists. Let h, g be functions with h(N) → −∞ and g(N) → +∞ as

N → +∞. Prove that

lim
N→∞

∫ g(N)

h(N)

f

exists and equals
∫∞
−∞ f .

Solution: Give ε > 0 there is n0 > 0 such that for all N > n0 we have∫ N

0

f ∈
(∫ ∞

0

f − ε,

∫ ∞
0

f + ε

)
.

Because g(N) → ∞ as N → ∞, there is m > 0 such that for all N > m, g(N) > n0,
and so ∫ g(N)

0

f ∈
(∫ ∞

0

f − ε,

∫ ∞
0

f + ε

)
.

Since this was true for arbitrary ε > 0, we conclude that∫ g(N)

0

f →
∫ ∞
0

f as N →∞.

By a similar argument we get∫ 0

h(N)

f →
∫ 0

−∞
f as N →∞.

These two facts together show that limN→∞
∫ g(N)

h(N)
f exists and equals

∫∞
−∞ f .

3. Check that each of the following functions f is actually invertible, and find (a fairly
simple expression for) f−1 for each. Specify the domain and range of f−1 in each case.

(a) f(x) = x3 + 1.

Solution: f is increasing on R, so is invertible. f clearly has range R, so both
the domain and range of inverse f−1 is R. Evidently f−1 is given by

f−1(x) = 3
√
x− 1.

(b) f(x) =

{
x if x is rational
−x if x is irrational

Solution: f neither increasing nor decreasing on R. However, it is injective: if
x 6= y, then either

• x, y ∈ Q, in which case f(x) 6= f(y) (since f(x) = x, f(y) = y), or

• x, y 6∈ Q, in which case f(x) 6= f(y) (since f(x) = −x, f(y) = −y), or

• one of x, y is rational, the other irrational, in which case f(x) 6= f(y) (since
one of x, y is rational, the other irrational).
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So f is invertible. The range of f is all of R, so both the domain and range of
inverse f−1 is R. Evidently f−1 is just f itself.

(c) f(x) = x + [x]. (Remember that [x] is the largest integer less than or equal to x.)

Solution: f is increasing on R, so is invertible (and the range of the inverse is R).
It is continuous on the intervals of the form [n, n + 1), n ∈ Z, where it takes on
the range of values [2n, 2n + 1). So the range of f (and hence the domain of f−1)
is ∪n∈Z[2n, 2n + 1).

On the interval [2n, 2n + 1), the inverse increases linearly along [n, n + 1), so the
inverse can be expressed as follows:

f−1(x) = x− n if x ∈ [2n, 2n + 1) for some n ∈ Z.

(This may be expressible compactly in terms of the floor function [x], but I didn’t
think about it).

(d) f(x) = x
1−x2 , −1 < x < 1.

Solution: f is increasing on (−1, 1) (it is differentiable, with derivative x2 +
1/(x2 − 1)2, which is always positive). Thinking about limits as x approaches −1
from above and 1 from below, we get that the range is R, So f is invertible with
domain of f−1 being R, range (−1, 1).

To find an expression for f−1(x), set (for convenience) f−1(x) = y. We have
f(y) = x, so y/(1− y2) = x or xy2 + y − x, or

y =
−1±

√
1 + 4x2

2x
.

Which of these two candidates for f−1 is the right one? We know, for example,
that f(1/2) = 2/3, so f−1(2/3) = 1/2. Now

−1±
√

1 + 4(2/3)2

2(2/3)
=
−3± 5

4
.

By taking the “+” in ± we get 1/2, but by taking the “−” we get −2; so we
should take the “+”.

It’s tempting to now say “The inverse of f is given by

f−1(x) =
−1 +

√
1 + 4x2

2x
.′′

Unfortunately, this expression is not defined at x = 0, while the inverse is (and
takes value 0). Everywhere else this expression is fine; so the formally correct
answer is

f−1(x) =

{
−1+

√
1+4x2

2x
if x 6= 0

0 if x = 0.

4. Suppose f and g are increasing.
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(a) Is f + g necessarily increasing?

Solution: Yes. Suppose x, y are both in the domain of f + g (so both x, y are
both in the domains of both f and g separately) with x < y. We have f(x) < f(y)
and g(x) < g(y) (by properties of f and g) so (f + g)(x) < (f + g)(y).

(b) Is fg necessarily increasing?

Solution: Not necessarily; consider f(x) = g(x) = x on R.

(c) Is f ◦ g necessarily increasing?

Solution: Yes. Suppose x, y are both in the domain of f ◦ g (so both x, y are in
the domain g, and both f(x), f(y) are in the domain of f), with x < y. We have
g(x) < g(y) and so (f ◦ g)(x) = f(g(x)) < f(g(y)) = (f ◦ g)(y).

5. On which intervals [a, b] will the following functions by one-to-one?

(a) f(x) = x3 − 3x2.

Solution: f is continuous and differentiable on R. f ′(x) = 3x2 − 6x, and this
equals 0 at x = 0, 2. By examining test points in the intervals (−∞, 0), (0, 2) and
(2,∞) we find that f ′ > 0 on the first, so f increasing, f ′ < 0 on the second, so f
decreasing, and f ′ > 0 on the third, so f increasing.

Since f is continuous, we can add the end points to the various intervals to find that
the maximal intervals on which f is monotone, and so one-to-one, are A = (−∞, 0],
B = [0, 2] and C = [2,∞). But of course, f is one-to-one on any subinterval of any
of A, B, C, so (remembering that the question asked about finite closed intervals)
the final answer is:

The intervals [a, b] on which f is one-to-one are those intervals [a, b] that
are completely contained in one of A, B, C above: −∞ < a ≤ b ≤ 0, or
0 ≤ a ≤ b ≤ 1 or 2 ≤ a ≤ b <∞.

(b) f(x) = (1 + x2)−1.

Solution: f is continuous and differentiable on R. f ′(x) = −2x(1 + x2)−2, and
this equals 0 at x = 0. By examining test points in the intervals (−∞, 0) and
(0,∞) we find that f ′ > 0 on the first, so f increasing, and f ′ < 0 on the second,
so f decreasing.

Since f is continuous, we can add the end points to the intervals to find that the
maximal intervals on which f is monotone, and so one-to-one, are A = (−∞, 0]
and B = [0,∞). But of course, f is one-to-one on any subinterval of either of A,
B, so (remembering that the question asked about finite closed intervals) the final
answer is:

The intervals [a, b] on which f is one-to-one are those intervals [a, b] that
are completely contained in one of A, B above: −∞ < a ≤ b ≤ 0, or
0 ≤ a ≤ b <∞.
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6. Find a formula for (f−1)′′(x), and decide under what circumstances the derivative
actually exists.

Solution: For f−1(x) to be twice-differentiable, it is necessary for it to be differentiable.
We know that this occurs iff f ′(f−1(x)) exists and is not 0, in which case

(f−1)′(x) =
1

f ′(f−1(x))
.

Under what circumstances is this expression differentiable? We know from our study of
the derivative in the fall that 1/g is differentiable at x iff g is differentiable at x, and
g(x) 6= 0. Here, we know already that f ′(f−1(x)) 6= 0, so it is only necessary to further
assume that f ′′(f−1(x)) exists. Under that assumption, an application of chain rule
and reciprocal rule yields

(f−1)′′(x) =

(
1

(f ′ ◦ f−1)(x)

)′
=
−(f ′ ◦ f−1)′(x)

(f ′ ◦ f−1)2(x)
=
−f ′′(f−1(x))(f−1)′(x)

(f ′(f−1(x)))2
=
−f ′′(f−1)(x)

(f ′(f−1(x)))3
.

The conditions that were necessary for this were

• f ′(f−1(x)) exists and is not 0 and

• f ′′(f−1(x)) exists.

These are easily seen to be sufficient to allow the argument to run through.

7. Suppose that f : [a, b] → [c, d] is (strictly) increasing, and integrable on [a, b]. Prove
that f−1 : [c, d]→ [a, b] is integrable on [c, d], and that in fact∫ b

a

f +

∫ d

c

f−1 = bd− ac.

Solution (sketch): Consider a partition P = (t0, . . . , tn) (with a = t0 < t1 < · · · <
tn = b) of [a, b]. Associated with this is a partition P ′ = (f(t0), . . . , f(tn) (with
c = f(t0) < f(t1) < · · · < f(tn) = d) of [c, d].

From a picture, it is clear that the rectangles that make up the lower Darboux sum
L(f, P ) together with the rectangles that make up the upper Darboux sum U(f−1, P ′),
can be used to cover all of the square [0, b] × [0, d], except for an initial [0, a] × [0, b]
square. In other words:

L(f, P ) + U(f−1, P ′) = bd− ac.

This can be made formal quite easily, using that f is increasing.

But also, the same argument shows

U(f, P ) + L(f−1, P ′) = bd− ac.
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So we have

L(f, P ) = bd− ac− U(f−1, P ′) ≤
∫ b

a

f ≤ bd− ac− L(f−1, P ′) ≤ U(f, P )

for every partition P of [a, b]. In particular, for any ε > 0, since there is a partition P
of [a, b] with U(f, P )− L(f, P ) < ε, there is a partition P ′ of [c, d] with(

bd− ac− L(f−1, P ′)
)
−
(
bd− ac− U(f−1, P ′)

)
< ε,

or
U(f−1, P ′)− L(f−1, P ′) < ε.

This shows that f−1 is integrable on [c, d].

For the value of the integral, we have

bd− ac− U(f−1, P ′) ≤
∫ b

a

f ≤ bd− ac− L(f−1, P ′)

or

L(f−1, P ′) ≤
(∫ b

a

f

)
− bd− ac ≤ U(f−1, P ′),

for all partitions of [c, d] of the form P ′. But in fact all partitions of [c, d] can be
expressed as P ′, for some partition P on [a, b] (this easy fact uses invertibility of f , and
the fact that f is increasing). This forces∫ d

c

f−1 =

(∫ b

a

f

)
− bd− ac,

as claimed.

8. Fix a > 0. Here is a scheme for defining ax, for every rational x:

Step 1 Set a0 = 1 and set an = a · an−1 for n ∈ N (we did this as an example of a
recursive definition).

Step 2 For n ∈ N define a1/n to be the unique positive x satisfying xn = a (we did
this as an example of Intermediate Value Theorem).

Step 3 For positive rational r = m/n (m,n ∈ N), set ar = (a1/m)n.

Step 4 For negative rational r, set ar = 1/(a−r).

The only questionable step is Step 3. A given rational has many representations of
the form m/n, m,n ∈ N; for example 2/3 = 8/12 = 100/150.

Check that the definition given in Step 3 is in fact well-defined: if m/n and s/t are
both representations of the same rational r, then Step 3 gives the same value for ar,
whichever representation we use.
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Solution: Let m,n, s and t be for natural numbers satisfying m/n = s/t. Our goal is
to show that

(a1/n)m = (a1/t)s, (?)

where a1/n is that unique positive number such that (a1/n)n = 1 and a1/t is that unique
positive number such that (a1/t)t = 1.

Since the function “raise x to the ntth power” is one-to-one on the positives (it is
increasing in), we get that (?) is equivalent to(

(a1/n)m
)nt

=
(
(a1/t)s

)nt
. (??)

Now we need a general proposition about powers: for any real positive x, and any
natural numbers y, z, we have

(xy)z = xyz.

We prove this, for each fixed y, by induction on z. The base case z = 1 is clear (if
states (xy)1 = xy). For the induction step we have

(xy)z+1 = (xy) (xy)z (def. of pq+1 for q ∈ N)

= (xy) (xyz) (inductive hypothesis)

= xy+yz (basic property proved in hwork last semester)

= xy(z+1).

Applying to both sides of (??) we find that (??) is equivalent to

(a1/n)mnt = (a1/t)snt,

which, by a reverse application of the general proposition is equivalent to(
(a1/n)n

)mt
=
(
(a1/t)t

)sn
which by definition is equivalent to

amt = asn.

But this is evidently true, since m/n = s/t implies mt = sn.
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