
Math 10860, Honors Calculus 2

Homework 6 NAME:

Solutions

1. Consider the function f(x) =

{
sinx
x

if x 6= 0
1 if x = 0

.

(a) Verify that f is continuous at 0. (We did this informally in the fall, now we can
do it formally. This part should be trivial.)

Solution: There are two possible valid approaches:

• use L’Hôpital’s rule, or:

• use what we now know about the derivative of sin:

lim
x→0

sinx

x
= lim

x→0

sin(0 + x)− sin 0

x
= sin′ 0 = cos 0 = 1.

(b) Verify that f is differentiable at 0, and find f ′(0). (This requires a small ε-δ
argument; it’s the argument we skipped in class, when we talked about sin and
cos being differentiable at 0,±π,±2π, et cetera. Basically what you have to show,
either in general or for this specific example, that if f is defined on some open
interval that contains a, f is continuous, f is differentiable everywhere except
(possibly) at a, and if there is some number L such that f ′ approaches L near a,
then in fact f is differentiable at a, and the derivative there is L).

Solution: Away from 0, f is differentiable with derivative x cosx−sinx
x2

. But what
about at 0?

An application of L’Hôpital’s rule yields that

lim
x→0

x cosx− sinx

x2
= lim

x→0

−x sinx

2x
= 0.

In other words, the function f ′ (which we now know to be defined everywhere
except perhaps at 0), approaches 0 near 0. But also, as observed in part (a), the
function f is continuous at 0. We now need the following technical result, alluded
to in the question:

If a function f is continuous at a, f ′ exists near a, and limx→a f
′(x) exists

and equals L then f ′(a) = L.

1



This allows us to conclude that f ′(0) exists and equals 0.

There are two ways to prove the quoted result above. The “hard” way is to give a
(fairly short) ε-δ proof. I won’t reproduce it here; it is Lemma 12.6 of the course
notes.

The “soft” way is through the most general form of L’Hôpital’s rule. We are
looking at

lim
b→a

f(b)− f(a)

b− a
.

This expression doesn’t satisfy the conditions of the easily proved, weak, form of
L’Hôpital’s rule (Claim 9.11 in the notes), because the function in the numerator
(sending b to f(b)− f(a)) is not known to be differentiable at a. However, it does
satisfy all the conditions of the strong (kick-ass) form of L’Hôpital’s rule (Theorem
9.12 of the notes). Specifically:

• limb→a f(b)− f(a) = 0

• limb→a b− a = 0

•
lim
b→a

deriv. of num. wrt b

deriv. of denom. wrt b
= lim

b→a

f ′(b)

1
= L.

So Theorem 9.12 allows us to conclude that

f ′(a) = lim
b→a

f(b)− f(a)

b− a
= L.

The second approach was “soft” because it just used a known theorem; but
remember that the full version of L’Hôpital’s rule (and that full version is
needed here) is quite hard to prove — we skipped it in the fall because it
would take too long. On the other hand, the ε-δ proof of Lemma 12.6 is quite
easy! The second approach here is an example of using a sledgehammer to
crack a nut.

2. Compute

lim
x→0

(
1

x
− 1

sinx

)
.

Solution: We have
1

x
− 1

sinx
=

sinx− x
x sinx

.

By L’Hôpital’s rule,

lim
x→0

(
1

x
− 1

sinx

)
= lim

x→0

sinx− x
x sinx

= lim
x→0

cosx− 1

x cosx+ sinx

= lim
x→0

− sinx

−x sinx+ 2 cosx
= 0.
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3. This question is about Machin’s formula for π.

(a) Prove that for all α and β for which all of tan(α + β), tanα and tan β exist,

tan(α + β) =
tanα + tan β

1− tanα tan β
.

Solution: Assuming tan(α + β) exists we have

tan(α + β) =
sin(α + β)

cos(α + β)
=

sinα cos β + sin β cosα

cosα cos β − sinα sin β
.

As long as both tanα, tan β exist, it is legitimate to divide through by cosα cos β
to get

tan(α + β) =
tanα + tan β

1− tanα tan β
,

as required.

(b) Deduce from the previous part that for certain x, y,

arctanx+ arctan y = arctan

(
x+ y

1− xy

)
.

Determine exactly what conditions on x, y make this identity valid.

Solution: For all reals x, y, there are numbers α, β with tanα = x and tan β = y,
and with −π/2 < α, β < π/2. It is tempting now to say:

“As long as α + β 6= ±π/2, we know

tan(α + β) =
tanα + tan β

1− tanα tan β
,

so

tan(arctanx+ arctan y) =
x+ y

1− xy
so

arctanx+ arctan y = arctan

(
x+ y

1− xy

)
.′′

This is correct up to the last line. To deduce that

arctan tan(arctan x+ arctan y) = arctan x+ arctan y

we need to know that arctanx+ arctan y is in the part of the domain of tan on
which we defined arctan, namely the restricted domain (−π/2, π/2). Once we
know this, everything is ok.

So the assumption we need to make on x and y to conclude

arctanx+ arctan y = arctan

(
x+ y

1− xy

)
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is that
−π

2
< arctanx+ arctan y <

π

2
(which also ensures that α + β 6= ±π/2, and therefore allows the application of
the tangent summation formula).

This is an awkward condition to check. Since we’ll need the formula later in
the question, here is an easy-to-check condition that implies −π/2 < arctanx+
arctan y < π/2, and applies in all cases where will need it to:

x, y ∈ [−1, 1], and not both = 1 or = −1.

(Since on [−1, 1], arctan increases from−π/4 to π/4, this is equivalent to arctanx, arctan y ∈
[−π/4, π/4] and not both = −π/4 or = π/4; this clearly gives −π/2 < arctanx+
arctan y < π/2.)

There is in fact a simple-to-check condition on x, y that is necessary and sufficient
for −π/2 < arctanx + arctan y < π/2, namely xy < 1, but we won’t prove that
here.

(c) (This part is an aside, but hopefully a cute one). The picture above shows a 1
by 3 rectangle divided into three 1 by 1 squares. Show that α = β + γ. You
may assume the connection between our analytic trigonometric functions, and the
ratios of sides of right-angled triangles, as illustrated below:

Solution: We have α = arctan 1, β = arctan 1/2 and γ = arctan 1/3. Since
1/2, 1/3 ∈ [−1, 1],, and not both = 1 or = 1, the arctangent summation formula
applies1 and says

β + γ = arctan(1/2) + arctan(1/3) = arctan

(
1/2 + 1/3

1− (1/2)(1/3)

)
= arctan(1) = α.

1Or, more directly, it is clear that π/4 = α > β > γ > 0, so 0 < α+ β < π/2, so arctangent summation
formula applies.
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One could also approach this problem using arccos and/or arcsin, but at some
point, no matter how the problem is approached, one has to address the issue that

Inverse trig function(trig function(x))= x only for x in a certain range.

(d) Prove Machin’s formula:

π

4
= 4 arctan

1

5
− arctan

1

239
.

Solution: Machin’s formula is equivalent to

arctan 1 + arctan
1

239
=

(
arctan

1

5
+ arctan

1

5

)
+

(
arctan

1

5
+ arctan

1

5

)
.

By the arctangent summation formula (valid in all cases, either by our sufficient
criterion, or by observing that arctanx ∈ (0, π/4) for all 0 < x < 1, so clearly
every time we look at arctanx+ arctan y below, it is in the range (0, π/2)),

arctan
1

5
+ arctan

1

5
= arctan

5

12

and so the right-hand side above is

arctan
5

12
+ arctan

5

12
= arctan

120

119
,

while the left-hand side above is

arctan 1 + arctan
1

239
= arctan

120

119

also.

4. (a) Find formulae for sin 3x in terms of sinx, and for cos 3x in terms of cosx.

Solution: We have

sin 3x = sin(2x+ x)

= sin 2x cosx+ cos 2x sinx

= 2 sinx cos2 x+ cos2 x sinx− sin3 x

= 3 sinx cos2 x− sin3 x

= 3 sinx(1− sin2 x)− sin3 x

= 3 sinx− 4 sin3 x.

and

cos 3x = cos(2x+ x)

= cos 2x cosx− sin 2x sinx

= cos3 x− sin2 x cosx− 2 sin2 x cosx

= cos3 x− 3 sin2 x cosx

= cos3 x− 3(1− cos2 x) cosx

= 4 cos3 x− 3 cosx.
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(b) Deduce that (not unexpectedly) sin π
6

= 1
2

and cos π
6

=
√
3
2

.

Solution: From the formula for sin 3x in terms of sinx, evaluated at x = π/6, we
get

4 sin3(π/6)− 3 sin(π/6) + 1 = 0.

So sin(π/6) is a solution to the polynomial equation f(x) = 0, where f(x) =
4x3 − 3x+ 1, and must lie between 0 and 1.

Now f(0) = 1 and f(1) = 2, and f ′(x) = 12x2 − 3, which is negative on [0, 1/2)
and positive on (1/2, 1]. It follows that f decreases from 1 to f(1/2) on [0, 1/2]
and increases from f(1/2) to 2 on [1/2, 1]. We have f(1/2) = 0, so f > 0 on
[0, 1/2) ∪ (1/2, 1]. Hence x = 1/2 is the unique solution to f(x) = 1/2 on [0, 1],
and sin(π/6) = 1/2 as claimed.

From the formula for cos 3x in terms of sinx, evaluated at x = π/6, we get

4 cos3(π/6)− 3 cos(π/6) = 0.

So cos(π/6) is a solution to the polynomial equation g(x) = 0, where g(x) =
4x3 − 3x, and must lie (strictly) between 0 and 1. It is easy to check that the
unique such solution is x =

√
3/2, so cos(π/6) =

√
3/2 as claimed.

5. If t = tan(x/2) find simple expressions for sinx and cosx in terms of t. (“Simple” here
means that the expressions should be rational functions in t. The only assumption you
should make on x is that tan(x/2) is defined.)

Solution 1 (a weak solution): We have t = tan(x/2), so, assuming −π < x < π, we
get x = 2 arctan t. It follows that

sinx = sin(2(arctan t)) = 2 sin(arctan t) cos(arctan t).

Now

t = tan(x/2) =
sin(x/2)

cos(x/2)
=

sin(x/2)√
1− sin2(x/2)

(note that we take the positive square root, since −π < x < π implies cos(x/2) > 0).
Rearranging, we get

sin2(x/2) =
t2

1 + t2

or

sin(arctan t) = sin(x/2) =
t√

1 + t2

(note that if x ≥ 0 then t ≥ 0, so the above expression is positive, as it should be since
sin(x/2) ≥ 0 in this case; and if x ≤ 0 then t ≤ 0, so the above expression is negative,
as it should be since sin(x/2) ≤ 0 in this case).

Since cos(x/2) =
√

1− sin2(x/2) in our range of x (on which cos(x/2) is non-negative),
we get also

cos(arctan t) = cos(x/2) =

√
1− t2

1 + t2
=

1√
1 + t2

.
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So,

sinx =
2t

1 + t2
.

Also,

cosx = cos(2(arctan t)) = cos2(arctan t)− sin2(arctan t) =
1− t2

1 + t2
.

The issue with this solution is the assumption that −π < x < π, which is not actually
required. For example, if x = 7π/6 then x/2 = 7π/12 and t = −2−

√
3, so

2t

1 + t2
= −1

2
= sin(7π/6)

and
1− t2

1 + t2
= −
√

3

2
= cos(7π/6).

Solution 2 (a much better solution): Here’s an alternate solution, that does not make
any assumption on x, other than that x/2 is in the domain of the tangent function.

Knowing t = tan(x/2), we have

sinx = 2 sin(x/2) cos(x/2)

= 2
sin(x/2) cos2(x/2)

cos(x/2)

= 2 tan(x/2) cos2(x/2)

=
2t

sec2(x/2)

=
2t

1 + tan2(x/2)

=
2t

1 + t2
,

with everything valid exactly as long as tan(x/2) is defined.
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Also, since cosx = cos2(x/2)− sin2(x/2) and 1 = cos2(x/2) + sin2(x/2), we have

cosx = 1− 2 sin2(x/2)

= 1− 2
sin2(x/2) cos2(x/2)

cos2(x/2)

= 1− 2 tan2(x/2) cos2(x/2)

= 1− 2t2 cos2(x/2)

= 1− 2
t2

sec2(x/2)

= 1− 2
t2

1 + tan2(x/2)

= 1− 2
t2

1 + t2

=
1− t2

1 + t2
,

again with everything valid exactly as long as tan(x/2) is defined.

6. This question is about the hyperbolic trigonometric functions sinh and cosh, defined as
follows:

sinh : R→ R abcandabc cosh : R→ R
x 7→ ex−e−x

2
x 7→ ex+e−x

2
.

It is a long question, and I don’t expect you to do all of it carefully. You should do
every part in a less careful, scratch-work sort of way (in particular, you will do your
soul good if you verify Part (h)), but here are the only parts that you should turn in
for grading:

• Part (c)

• Parts (d)(iii) and (d)(vii)

• Parts (e), (f) and (g).

(a) Look at a graph of sinh. Check that all the features of the graph follow from basic
calculus considerations: sinh is increasing from −∞ (at −∞) to ∞ (at ∞), never
has zero derivative, is concave for negative x, convex for positive x, and passes
through the origin.

Solution: Routine (I hope!).

(b) Look at a graph of cosh. Check that all the features of the graph follow from
basic calculus considerations: cosh decreases from ∞ (at −∞) to 1 (at 0), then
increases to ∞ (at ∞), and is always convex.

Solution: Routine.
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(c) Name the famous monument, located in the midwest, whose shape is an upside-
down cosh graph2.

Solution: It’s the Jefferson National Expansion Memorial (a.k.a. the Gateway
Arch) in St. Louis, MO.

(d) Check that sinh and cosh satisfy the following identities, that are very reminiscent
of identities satisfied by sin and cos:

i. cosh2− sinh2 = 1.

Solution: Routine.

ii. tanh2 +1/ cosh2 = 1 (Here tanh is defined to be sinh / cosh; note that its
domain is all reals).

Solution: Routine.

iii. sinh(x+ y) = sinh x cosh y + sinh y coshx

Solution:

sinh(x+ y) =
ex+y − e−x−y

2
,

while sinhx cosh y + sinh y coshx

=

(
ex − e−x

2

)(
ey + e−y

2

)
+

(
ey − e−y

2

)(
ex + e−x

2

)
=

ex+y + ex−y − e−x+y − e−x−y + ey+x + ey−x − e−y+x − e−y−x

4

=
2ex+y − 2e−x−y

4

=
ex+y − e−x−y

2
,

so the two sides are equal.

iv. cosh(x+ y) = cosh x cosh y + sinh y sinhx.

Solution: Routine (same as last part).

v. sinh′ = cosh.

Solution: Routine.

vi. cosh′ = sinh.

Solution: Routine.

2This is not some math professor BS. See, for example, the “Mathematical elements” section of its
Wikipedia page. (You can also find the verification on its official page, but Wikipedia presents it better.)
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vii. tanh′ = 1/ cosh2

Solution: Since

tanh(x) =
sinh(x)

cosh(x)

have

tanh′(x) =
sinh′(x) cosh(x)− sinh(x) cosh′(x)

cosh2(x)

=
cosh2(x)− sinh2(x)

cosh2(x)

=
1

cosh2(x)
,

using parts (i), (v) and (vi).
One could also directly differentiate

ex−e−x

2
ex+e−x

2

with respect to x and check that one gets

1(
ex+e−x

2

)2 .
(e) sinh is invertible, with inverse sinh−1 : R → R. Because sinh never has zero

derivative, sinh−1 is differentiable everywhere. Find a very simple expression for
(sinh−1)′(x) (one that does not involve hyperbolic trigonometric functions).

Solution: We have

(sinh−1)′(x) =
1

sinh′(sinh−1(x))

=
1

cosh(sinh−1(x))
.

Now
cosh2(sinh−1(x))− sinh2(sinh−1(x)) = 1

(part (d)(i)), so
cosh2(sinh−1(x)) = x2 + 1,

and so, since cosh is always positive,

cosh(sinh−1(x)) =
√
x2 + 1

leading finally to

(sinh−1)′(x) =
1√

x2 + 1
.
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(f) Verify that sinh−1(x) = log(x+
√
x2 + 1) for all real x.

Solution: Because sinh is an invertible function whose domain and range is all
reals, by definition sinh−1(x) is that unique real number y such that sinh(y) = x.
To check that sinh−1(x) = log(x +

√
x2 + 1), we therefor need only check that

sinh(log(x+
√
x2 + 1)) = x. And indeed, we have

sinh(log(x+
√
x2 + 1)) =

elog(x+
√
x2+1) − e− log(x+

√
x2+1)

2

=
x+
√
x2 + 1− 1

x+
√
x2+1

2

=
(x+

√
x2 + 1)2 − 1

2(x+
√
x2 + 1)

=
2x2 + 2x

√
x2 + 1

2(x+
√
x2 + 1)

= x.

(g) Calculate
∫ b
a

dt√
1+t2

.

Solution: We have just learned that sinh−1(t) is an antiderivative of 1/
√

1 + t2,
and that log(t+

√
t2 + 1) is another expression for sinh−1(t). So by FTOC part 2,∫ b

a

dt√
1 + t2

= log(b+
√
b2 + 1)− log(a+

√
a2 + 1)

= log

(
b+
√
b2 + 1

a+
√
a2 + 1

)
.

(h) This question justifies the name “hyperbolic trigonometric functions” for sinh and
cosh.

Consider the curve in the (x, y)-plane consisting of all points (x, y) satisfying
x2 − y2 = 1 (this curve is called a hyperbola). Let P = (a, b) be a point on the
curve, with a ≥ 1 and b ≥ 0. Suppose that the area A bounded by

• the x-axis between (1, 0) and (0, 0),

• the line segment from (0, 0) to P , and

• the curve x2 − y2 = 1 between P and (1, 0)

is t/2 (see the picture below). Prove that a = cosh t and b = sinh t. (So: the
hyperbolic trigonometric functions can be defined in exact analogy with the
ordinary trigonometric functions, by replacing the circle x2 + y2 = 1 with the
hyperbola x2 − y2 = 1).
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Solution: Not routine at all! The solution to this exercise is described in Section
12.5 of the course notes.
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