
Math 10860, Honors Calculus 2

Homework 8 NAME:

Solutions

1. HELD OVER FROM HOMEWORK 7; TO BE TURNED IN: Remember that
there are no silver-bullet rules for substitution. Just try to substitute for an expression
that appears frequently or prominently. If two different troublesome expressions appear,
try to express them both in terms of some new expression. Do any two of these.

(a) ∫
dx√

1 + ex
.

Solution: Try u =
√

1 + ex, so du = exdx/(2
√

1 + ex), so dx/
√

1 + ex = 2du/ex =
2du/(u2 − 1). We get∫

dx√
1 + ex

=

∫
2du

u2 − 1

=

∫ (
1

u− 1
− 1

u+ 1

)
du

= log |u− 1| − log |u+ 1|

= log

∣∣∣∣u− 1

u+ 1

∣∣∣∣
= log

∣∣∣∣√1 + ex − 1√
1 + ex + 1

∣∣∣∣ .
But in fact the absolute value signs are not needed here:

√
1 + ex ≥ 1 always, so

we are never attempting to evaluate log at a negative argument, and we can write∫
dx√

1 + ex
= log

(√
1 + ex − 1√
1 + ex + 1

)
.

Note: You might try to be fancy, and quote∫
du

u2 − 1
= − tanh−1 u

(this is not a standard integral, but it appears in some lists on the backs of calculus
books). But this is not exactly correct; tanh−1 (inverse hyperbolic tangent) is
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defined only on (−1, 1), so the above identity is true only on that domain. And
for this problem, u is always > 1.

It happens that the inverse hyperbolic cotangent function coth−1 is defined exactly
where tanh−1 is not defined — on (−∞, 1) ∪ (1,∞), and on its domain satisfies∫

du

u2 − 1
= − coth−1 u.

So one can make this approach correct by saying∫ √
1 + exdx = −2 coth−1

√
1 + ex.

(Technically, to be fully correct one needs to say that coth−1 should have its
domain restricted to positive inputs).

(b) ∫
4x + 1

2x + 1
dx.

Solution: Make the substitution u = 2x + 1 = ex log 2 + 1. We have

du = log 2ex log 2 dx

so

dx =
1

(log 2)

1

2x
du =

1

(log 2)

1

u− 1
du,

and
4x + 1 = (2x)2 + 1 = (u− 1)2 + 1.

We get∫
4x + 1

2x + 1
dx =

1

log 2

∫
(u− 1)2 + 1

u(u− 1)
du

=
1

log 2

∫ (
1− 1

u
+

1

u(u− 1)

)
du

=
1

log 2

∫ (
1− 1

u
+

1

u− 1
− 1

u

)
du

=
1

log 2

∫ (
1− 2

u
+

1

u− 1

)
du

=
1

log 2
(u− 2 log |u|+ log |u− 1|)

=
1

log 2
((2x + 1)− 2 log(2x + 1) + log 2x)

=
1

log 2
((2x + 1)− 2 log(2x + 1) + x log 2) (alternate form).
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(c) ∫
1

x2

√
x− 1

x+ 1
dx.

Solution: Note that x is restricted here to be in the set (−∞,−1]∪ [1,∞). Start
with u = 1/x (so u is restricted to [−1, 1]\{0}), so du = −dx/x2, so −du = dx/x2.
Also √

x− 1

x+ 1
=

√
1− 1/x

1 + 1/x
=

√
1− u
1 + u

,

so ∫
1

x2

√
x− 1

x+ 1
dx = −

∫ √
1− u
1 + u

du.

We can manipulate the integrand to make it amenable to a trigonometric substitu-
tion: ∫ √

1− u
1 + u

du =

∫ √
1− u
1 + u

√
1− u√
1− u

du =

∫
1− u√
1− u2

du.

Via substitution u = sin t (which is valid — u is restricted to [−1, 1]), du = cos t dt,
we get ∫

1− u√
1− u2

du =

∫
1− sin t

cos t
cos t dt =

∫
(1− sin t) dt = t+ cos t.

So ∫
1

x2

√
x− 1

x+ 1
dx = −t− cos t

= − arcsinu− cos(arcsinu)

= − arcsin(1/x)− cos(arcsin(1/x)).

If x ≥ 1, then by the standard right-triangle argument, cos(arcsin(1/x)) =√
1− 1/x2, and this is also valid if x ≤ −1, so∫

1

x2

√
x− 1

x+ 1
dx = − arcsin(1/x)−

√
1− 1/x2.

2. Next, an integral where it might not be too ridiculous to consider the last resort
substitution t = tan(x/2).∫

dx

a sinx+ b cosx
. (a, b arbitrary constants).

Solution: Via t = tan(x/2) we get∫
dx

a sinx+ b cosx
=

∫ (
1

2at
1+t2

+ b(1−t2)
1+t2

)
2dt

1 + t2

=

∫
2dt

b+ 2at− bt2
.
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We deal first with a boundary cases of this integral. If b = 0, then the integral becomes

1

a

∫
dt

t
=

log |t|
a

=
log | tan(x/2)|

a
.

(In this case the integral is (1/a)
∫

cscx dx, which is more traditionally presented as
log | cscx− cotx|; the two answers are easily checked to be the same).

Otherwise, whatever the values of a, b, the quadratic in the denominator always has
two real roots (its discriminant (the “b2 − 4ac” in the quadratic formula) is 4a2 + 4b2,
which is always positive). So the denominator factors into two real roots. Specifically:

b+ 2at− bt2 = −b

(
t− a+

√
a2 + b2

b

)(
t− a−

√
a2 + b2

b

)
.

A partial fractions decomposition gives:

2

b+ 2at− bt2
=

1√
a2 + b2

(
1

t− a−
√
a2+b2

b

− 1

t− a+
√
a2+b2

b

)
.

The value of the integral when b 6= 0 is thus (obviously):∫
dx

a sinx+ b cosx
=

1√
a2 + b2

log

∣∣∣∣∣tan(x/2)− a−
√
a2+b2

b

tan(x/2)− a+
√
a2+b2

b

∣∣∣∣∣ .
3. Next, some integrands appropriate for partial fractions. Do any one of these.

(a) ∫
2x2 + 7x− 1

x3 − 3x2 + 3x− 1
dx.

Solution: Have
x3 − 3x2 + 3x− 1 = (x− 1)3

and
2x2 + 7x− 1

x3 − 3x2 + 3x− 1
=

8

(x− 1)3
+

11

(x− 1)2
+

2

x− 1
,

so ∫
2x2 + 7x− 1

x3 − 3x2 + 3x− 1
dx = − 4

(x− 1)2
− 11

(x− 1)
+ 2 log |x− 1|.

(b) ∫
3x2 + 3x+ 1

x3 + 2x2 + 2x+ 1
dx.

Have
x3 + 2x2 + 2x+ 1 = (x+ 1)(x2 + x+ 1)
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and
3x2 + 3x+ 1

x3 + 2x2 + 2x+ 1
=

2x

x2 + x+ 1
+

1

x+ 1
.

Now

2x

x2 + x+ 1
=

2x

(x+ (1/2))2 + (
√

3/2)2

=
2(x+ (1/2))

(x+ (1/2))2 + (
√

3/2)2
− 1

(x+ (1/2))2 + (
√

3/2)2
.

Each of the three terms

1

x+ 1
,

2(x+ (1/2))

(x+ (1/2))2 + (
√

3/2)2
,

1

(x+ (1/2))2 + (
√

3/2)2

are readily integrable, and∫
3x2 + 3x+ 1

x3 + 2x2 + 2x+ 1
dx = log |x+1|+log |(x+(1/2))2+(

√
3/2)2|+ 2√

3
arctan

(
2x+ 1√

3

)
.

(For the last integral: ∫
du

u2 + a2
=

1

a
tan−1

(u
a

)
is easily derived from

∫
dx/(x2 + 1) = tan−1 x.)

(c) ∫
3x

(x2 + x+ 1)3
dx.

The integral is already in the correct form for partial fractions. We write

3x

(x2 + x+ 1)3
=

3(x+ (1/2))

(x+ (1/2))2 + (
√

3/2)2)3
− 3/2

(x+ (1/2))2 + (
√

3/2)2)3
,

and use reduction formulae from class to get:∫
3x

(x2 + x+ 1)3
dx = −

(
2x3 + 3x2 + 4x+ 3

2(x2 + x+ 1)2

)
+

2√
3

arctan

(
2x+ 1√

3

)
.

4. Next, a pot-pourri with a (slightly non-obvious) trigonometric flavor. Do part (a)
and one of the other two.

(a) ∫ √
1− 4x− 2x2 dx.

First complete the square:

1−4x−2x2 = −2(x2+2x−1/2) = −2((x+1)2−3/2) = 3−2(x+1)2 = (
√

3)2−(
√

2(x+1)2).
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Now make substitution √
2√
3

(x+ 1) = sin t.

So √
(
√

3)2 − (
√

2(x+ 1)2) =
√

3
√

1− sin2 t =
√

3 cos t,

and

dx =

√
3√
2

cos t dt,

so ∫ √
1− 4x− 2x2 dx =

3√
2

∫
cos2 t dt =

3

2
√

2

(
t+

sin 2t

2

)
.

Now
sin 2t

2
= sin t cos t =

√
2√
3

(x+ 1) cos t.

If we are in the regime where x+ 1 ≥ 0, so t is an angle between 0 and π/2, then
from a right-angled triangle we get

cos t =

√
1− 4x− 2x2√

3
.

So, for x+ 1 ≥ 0,∫ √
1− 4x− 2x2 dx =

3

2
√

2

(
arcsin

(√
2(x+ 1)√

3

)
+

√
2√
3

(x+ 1)

√
1− 4x− 2x2√

3

)

=
3

2
√

2
arcsin

(√
2(x+ 1)√

3

)
+

(x+ 1)

2

√
1− 4x− 2x2.

This also works when x+ 1 ≤ 0, so is the final answer.

(b) ∫
cosx

√
9 + 25 sin2 x dx.

A natural substitution is sinx = 3
5

tan t. Then√
9 + 25 sin2 x = 3

√
1 + tan2 t = 3 sec t,

and

cosx dx =
3

5
sec2 t dt,

so ∫
cosx

√
9 + 25 sin2 x dx =

9

5

∫
sec3 t dt

=
9

10
(sec t tan t+ log | sec t+ tan t|)
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(using a previous result on
∫

sec3w dw).

Assuming we are in the regime where t is an angle between 0 and π/2, since we
have

tan t =
5 sinx

3
,

so from a right-angled triangle we get that

sec t =

√
9 + 25 sin2 x

3

and so∫
cosx

√
9 + 25 sin2 x dx =

9

10

(
5 sinx

√
9 + 25 sin2 x

9
+ log

∣∣∣∣∣
√

9 + 25 sin2 x

3
+

5 sinx

3

∣∣∣∣∣
)
.

Since there is no potential complication with this function in terms of differentiating
in other regimes of x, this is the answer for all x.

(c) ∫
e4x
√

1 + e2x dx.

Start with u = 1+e2x, so du = 2e2xdx, and dx = du/(2(u−1)). Also (u−1)2 = e4x.
We get ∫

e4x
√

1 + e2x dx =
1

2

∫
(u− 1)

√
u du

=
u5/2

5
− u3/2

3

=
(1 + e2x)5/2

5
− (1 + e2x)3/2

3
.

5. Finally, another pot-pourri. Who knows what methods might be needed? Do any two
of these.

(a) ∫
x arctanx

(1 + x2)3
dx.

Via integration by parts, with

u = arctanx, du =
dx

1 + x2
,

dv =
x

(1 + x2)3
dx, v =

−1

4(1 + x2)2
,
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get ∫
x arctanx

(1 + x2)3
dx =

− arctanx

4(1 + x2)2
+

∫
dx

4(1 + x2)3

=
− arctanx

4(1 + x2)2
+

1

32

(
x(5 + 3x2)

(1 + x2)2
+ 3 arctanx

)
.

(This last integral can be obtained from a reduction formula that we derived in
class).

(b) ∫
log
√

1 + x2 dx.

Via integration by parts, with

u = log
√

1 + x2, du =
xdx

1 + x2
,

dv = dx, v = x,

get ∫
log
√

1 + x2 dx = x log
√

1 + x2 −
∫

x2dx

1 + x2

= x log
√

1 + x2 −
∫ (

1− 1

1 + x2

)
dx

= x log
√

1 + x2 − x+ arctanx.

(c) ∫ √
tanx dx.

Solution: Substituting u =
√

tanx,

du =
sec2 x dx

2
√

tanx
=

(tan2 x+ 1) dx

2u
=
u4 + 1) dx

2u
,

so

dx =
2u

u4 − 1
du,

and ∫ √
tanx dx =

∫
2u2

u4 − 1
du.

Factoring u4 − 1 = (u2 +
√

2u+ 1)(u2 −
√

2u+ 1), and writing

2u

u4 − 1
= −
√

2

2

(
u

u2 +
√

2u+ 1
− u

u2 −
√

2u+ 1

)
,
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after some (lots of) painful algebra, we get to∫ √
tanx dx = −

√
2

4
log
∣∣∣tanx+

√
2 tanx+ 1

∣∣∣
+

√
2

4
log
∣∣∣tanx−

√
2 tanx+ 1

∣∣∣
+

√
2

2
arctan

(√
2 tanx+ 1

)
−
√

2

2
arctan

(
−
√

2 tanx+ 1
)

(obviously).

6. This question concerns the function f defined by f(x) =
√
x, and its Taylor polynomial

of degree 3 at a = 4 (i.e., P3,4,f (x)).

(a) Find P3,4,f (x).

Solution: We have

f(x) =
√
x f(4) = 2

f ′(x) = 1
2
√
x

f ′(4) = 1
4

f ′′(x) = −1
4
x−3/2 f ′′(4) = −1

32

f ′′′(x) = 3
8
x−5/2 f ′′′(4) = 3

256

f ′′′′(x) = −15
16
x−7/2 (not needed for P3,4,f (x), but needed for R3,4,f (x)).

So

P3,4,f (x) = 2 +
(x− 4)

4
− (x− 4)2

64
+

(x− 4)3

512
.

(b) Write R3,4,f (x) in both the integral form and the Lagrange form.

Solution:

Integral form:
1

n!

∫ x

a

(x− t)nf (n+1)(t)dt =
−5

32

∫ x

4

(x− t)3t−7/2dt.

Lagrange form:
f (n+1)(c)(x− a)n+1

(n+ 1)!
=
−5c−7/2(x− 4)4

128
,

where c is some number between a and x.
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(c) Use Taylor’s theorem (and the computations of the previous parts) to show that

√
5 =

36640± 5

16384
.

(This is a true story: a calculator suggests that 16384
√

5 = 36635.7 · · · . The
fraction above gives

√
5 correct to 3 decimal places.)

Solution: We take x = 5, to get

P3,4,f (5) = 2 +
1

4
− 1

64
+

1

512
=

1145

512
=

36640

16384
.

So, since √
5 = f(5) = P3,4,f (5) +R3,4,f (5),

we would be done if we could show

|R3,4,f (5)| ≤ 5

16384
.

We consider the Lagrange form of the remainder term, which recall at x = 5 is

−5c−7/2

128
,

where c is some number between 4 and 5. The largest that −5/(128c7/2) can be
(in absolute value) in this range of c is at c = 4 (smaller denominator makes bigger
fraction), at which point it takes the value

5

16384

(in absolute value), and we are done.

7. (a) Find the Taylor polynomial of degree 4 of f(x) = x5 + x3 + x, at a = 1.

Solution: We have f(x) = x5 + x3 + x, f ′(x) = 5x4 + 3x2 + 1, f ′′(x) = 20x3 + 6x,
f ′′′(x) = 60x2 + 6 and f ′′′′(x) = 120x, so f(1) = 3, f ′(1) = 9, f ′′(1) = 26,
f ′′′(1) = 66 and f ′′′′(1) = 120, leading to

P4,1,f (x) = 3 + 9(x− 1) +
26(x− 1)2

2
+

66(x− 1)3

6
+

120(x− 1)4

24

or
P4,1,f (x) = 3 + 9(x− 1) + 13(x− 1)2 + 11(x− 1)3 + 5(x− 1)4.

(b) Express the polynomial p(x) = ax4 + bx3 + cx2 + dx+ e as a polynomial in (x− 2),
using the “start from the highest power, and work down” method described in the
notes and the lectures.
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Solution: Have

a(x− 2)4 = ax4 − 8ax3 + 24ax2 − 32ax+ 16a,

so

p(x) = a(x− 2)4 + (8a+ b)x3 + (−24a+ c)x2 + (32a+ d)x+ (−16a+ e).

Have

(8a+ b)(x− 2)3 = (8a+ b)x3 − 6(8a+ b)x2 + 12(8a+ b)x− 8(8a+ b),

so p(x) = a(x− 2)4 + (8a+ b)(x− 2)3

+(24a+ 6b+ c)x2 + (−64a− 12b+ d)x+ (48a+ 8b+ e).

Have

(24a+ 6b+ c)(x− 2)2 = (24a+ 6b+ c)x2 − 4(24a+ 6b+ c)x+ 4(24a+ 6b+ c),

so p(x) = a(x− 2)4 + (8a+ b)(x− 2)3 + (24a+ 6b+ c)(x− 2)2

+(32a+ 12b+ 4c+ d)x+ (−48a− 16b− 4c+ e).

Finally,

(32a+ 12b+ 4c+ d)(x− 2) + 2(32a+ 12b+ 4c+ d) = (32a+ 12b+ 4c+ d)x,

so

p(x) = a(x− 2)4 + (8a+ b)(x− 2)3 + (24a+ 6b+ c)(x− 2)2

+(32a+ 12b+ 4c+ d)(x− 2) + (16a+ 8b+ 4c+ 2d+ e).

(Ugh!)

MODIFIED VERSION, MAR 30: Express the polynomial p(x) = Ax3 +
Bx2 +Cx+D as a polynomial in (x− 2), using the “start from the highest power,
and work down” method described in the notes and the lectures.

Solution: Working from high powers down, we have

p(x) = Ax3 +Bx2 + Cx+D

= A(x− 2)3 + 6Ax2 − 12Ax+ 8A+Bx2 + Cx+D

= A(x− 2)3 + (6A+B)x2 + (−12A+ C)x+ (8A+D)

= A(x− 2)3 + (6A+B)(x− 2)2 + 4(6A+B)x− 4(6A+B)

+(−12A+ C)x+ (8A+D)

= A(x− 2)3 + (6A+B)(x− 2)2 + (12A+ 4B + C)x+ (−16A− 4B +D)

= A(x− 2)3 + (6A+B)(x− 2)2 + (12A+ 4B + C)(x− 2)

+2(12A+ 4B + C) + (−16A− 4B +D)

= A(x− 2)3 + (6A+B)(x− 2)2 + (12A+ 4B + C)(x− 2)

(8A+ 4B + 2C +D).
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(c) Let f be a polynomial of degree n, let a be any number, and let Pn,a,f be the
Taylor polynomial of f of degree n about a. Explain why Pn,a,f = f . (You can be
quite brief, but please be precise! This fact follows quickly from a couple of results
proved in the lectures, so you just need to briefly say what the right combination
is.)

Solution: Because Pn,a,f is the Taylor polynomial of f of degree n about a, we
know (from a theorem proved in class) that Pn,a,f agrees with f to order n at a,
that is

Pn,a,f ∼n,a f.

But we also know, from a theorem from class, that if two polynomials of degree
at most n agree to order n at a, they are equal. Since Pn,a,f and f are both
polynomials of degree at most n that agree to order n at a, they must be equal,
as claimed.

(d) Express the polynomial p(x) = ax4 + bx3 + cx2 + dx+ e as a polynomial in (x− 2),
using the result of part (c). (You should get the same answer as you got for part
(b). The computations should be much less messy for this part, though!)

Solution: From part (c), we need only compute P4,2,p(x) — this is a polynomial
in (x− 2), and equals p.

We have
p(2) = 16a+ 8b+ 4c+ 2d+ e,

p′(x) = 4ax3 + 3bx2 + 2cx+ d,

so
p′(2) = 32a+ 12b+ 4c+ d,

p′′(x) = 12ax2 + 6bx+ 2c,

p′′(2) = 48a+ 12b+ 2c,

p′′′(x) = 24ax+ 6b,

p′′′(2) = 48a+ 6b,

p′′′′(x) = 24a,

p′′′′(2) = 24a,

so

p(x) = P4,2,p(x) = (16a+ 8b+ 4c+ 2d+ e)

+(32a+ 12b+ 4c+ d)(x− 2)

+(24a+ 6b+ c)(x− 2)2

+(8a+ b)(x− 2)3

+a(x− 2)4,

exactly what we got in part (b), but much cleaner.
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MODIFIED VERSION, MAR 30: Express the polynomial p(x) = Ax3 +
Bx2 +Cx+D as a polynomial in (x− 2), using the result of part (c). (You should
get the same answer as you got for part (b). The computations should be much
less messy for this part, though!)

Solution: From part (c), we need only compute P3,2,p(x) — this is a polynomial
in (x− 2), and equals p.

We have
p(2) = 8A+ 4B + 2C +D,

p′(x) = 3Ax2 + 2BX + C,

so
p′(2) = 12A+ 4B + C,

p′′(x) = 6Ax+ 2B,

p′′(2) = 12A+ 2B,

p′′′(x) = 6A,

p′′′(2) = 6A,

so

p(x) = P3,2,p(x) = (8A+ 4B + 2C +D)

+(12A+ 4B + C)(x− 2)

+(6A+B)(x− 2)2

+A(x− 2)3,

exactly what we got in part (b), but much cleaner.

8. An important Taylor polynomial that we did not discuss much in class is that of log x,
at a = 1 (we can’t choose a = 0 here, since 0 is not in the domain of log). Actually, it’s
nicer to consider the function log(1 + x) at a = 0.

(a) By calculating derivatives, find the Taylor polynomial of degree n of log(1 + x)
about a = 0.

Solution: Let f(x) = log(1+x). We have f ′(x) = 1/(1+x), f ′′(x) = −1/(1+x)2,
f ′′′(x) = 2/(1 + x)3, f (4)(x) = −6/(1 + x)4, and in general f (n)(x) = (−1)n−1(n−
1)!/(1 + x)n, so that f(0) = log 1 = 0, f ′(0) = 1, f ′′(0) = −1, f ′′′(0) = 2,
f (4)(0) = −6, and in general f (n)(0) = (−1)n−1(n− 1)!, leading to

Pn,0,f (x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n−1

xn

n
.

13



(b) Show that for −1 < x ≤ 1 the remainder term Rn,0,log(1+·)(x) goes to zero as n
goes to infinity. Hint: It might be better to avoid the Lagrange or integral forms
of the remainder term, instead starting with

log(1 + x) =

∫ x

0

dt

1 + t
.

Solution: Following the hint we have

log(1 + x) =

∫ x

0

dt

1 + t

=

∫ x

0

(
1− t+ t2 − · · ·+ (−1)ntn +

(−1)n+1tn+1

1 + t

)
dt

= x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n

xn+1

n+ 1
+ (−1)n+1

∫ x

0

tn+1dt

1 + t
.

Since, as established in the last part,

Pn+1,0,f (x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n

xn+1

n+ 1
,

it follows that

Rn+1,0,f (x) = (−1)n+1

∫ x

0

tn+1dt

1 + t
.

If x = 0 this remainder term is always 0. If 0 < x ≤ 1 (the easy case) we have

|Rn+1,0,f (x)| =
∫ x

0

tn+1dt

1 + t
≤
∫ x

0

tn+1dt =
xn+2

n+ 2
→ 0.

If −1 < x < 0 (the trickier case) we have, using |
∫ b
a
f | ≤

∫ b
a
|f | for any f integrable

on [a, b] with a < b,

|Rn+1,0,f (x)| ≤
∫ 0

x

∣∣∣∣ tn+1

1 + t

∣∣∣∣ dt.
Now as t varies from x to 0, |1 + t| varies from x + 1 to 1, and in particular
1/|1 + t| ≤ 1/(1 + x) (this is a positive quantity). So

|Rn+1,0,f (x)| ≤ 1

1 + x

∫ 0

x

|t|n+1dt =
1

1 + x

(
−|t|n+2

n+ 2

∣∣∣∣0
t=x

)
=

|x|n+2

(n+ 2)(1 + x)
,

using
∫
|t|n+1 = −|t|n+2/(n+ 2) for t < 0. For each fixed x ∈ (−1, 0) we have

|x|n+2

(n+ 2)(1 + x)
→ 0

as n→∞, and so we are done (note that things go wrong at x = −1.)
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(c) Use Taylor polynomials, and your analysis of the remainder term, to find a rational
number that is within ±0.1 of log 2.

Solution: We have found that |Rn,0,f(1)| ≤ 1/(n + 1), so at n = 9 we get
|R9,0,f (1)| ≤ .1. It follows that P9,0,f (1) is within ±.1 of log 2. We have

P9,0,f (1) = 1− 1

2
− 1

3
+ · · · − 1

8
+

1

9
=

1879

2520
≈ 0.745635

(which turns out to differ from log 2 by only about 0.05).

(d) OPTIONAL: Show that for x > 1 the remainder term Rn,0,log(1+·)(x) does not
go to zero as n goes to infinity.

Solution: For x > 1 we have

|Rn+1,0,f (x)| =
∫ x

0

tn+1dt

1 + t
=

∫ 1

0

tn+1dt

1 + t
+

∫ x

1

tn+1dt

1 + t
.

If it was the case that Rn+1,0,f(x) → 0, then it would also be the case that

|Rn+1,0,f(x)| → 0, and then since both
∫ 1

0
tn+1dt
1+t

,
∫ x
1
tn+1dt
1+t

are non-negative, it
would also be the case that both these integrals thens to 0 as n grows. We show
that the second of then does not, a contradiction. We have, for x > 1,∫ x

1

tn+1dt

1 + t
≥ 1

1 + x

∫ x

1

tn+1dt ≥ x− 1

1 + x
,

which certainly does not go to 0.

(e) OPTIONAL: Nevertheless, use Taylor polynomials (slightly cleverly) to find a
rational number that is within ±0.1 of log 3.

Solution: We have log 3 = log(3/2)2 = log(3/2) + log 2. We estimate log 2 to
within ±.05 by using P19,0,f (1) = 33464927

46558512
. We estimate log(3/2) = log(1 + (1/2))

to within ±.05 by using P2,0,f(1/2) = 3
8
; note that the error here is in absolute

value at most (1/2)3/3 < 1/20. Adding these two estimates, the net error is at
most ±0.1, so we get a final estimate of

33464927

46558512
+

3

8
=

50924369

46558512
≈ 1.09377;

the actual value starts 1.09861.

Alternatively: log 3 = − log(1/3) = − log(1 + (−2/3)). We know that at
x = −2/3, the absolute remainder term |Rn,0,f (x)| is at most

|x|n+2

(n+ 2)(1 + x)
=

3(2/3)n+2

(n+ 2)
,

which falls below .1 at n = 4, so that −P4,0,f (−2/3) is with ±.1 of log 3. We have

−P4,0,f (−2/3) =
28

27
≈ 1.03704.
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9. OPTIONAL: Here is (something of) a generalization of the binomial theorem. Recall
that the binomial theorem says that for all natural numbers n, and for all real x,

(1 + x)n = 1 +

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn,

where for natural numbers k and n,
(
n
k

)
= n(n−1)···(n−(k−1))

k!
.

For an arbitrary real number α, and natural number k, define(
α

k

)
=
α(α− 1) · · · (α− (k − 1))

k!

(note that this agrees with
(
n
k

)
when α = n).

Let fα : (−1,∞)→ R be defined by fα(x) = (1 + x)α.

(a) Show that the Taylor polynomial of degree n of fα about 0 is

Pn,0,fα(x) = 1 +

(
α

1

)
x+

(
α

2

)
x2 + · · ·+

(
α

n

)
xn,

and that the remainder term can be expressed as Rn,0,fα(x) =
(
α
n+1

)
xn+1(1+t)α−n−1

for some t between 0 and x.

Solution: We have f (n)(x) = α(α− 1) · · · (α− (n− 1))(1 + x)α−n, and so

f (n)(0)

n!
=
α(α− 1) · · · (α− (n− 1))(1 + 0)α−n

n!
=

(
α

n

)
.

This establishes the claim about the Taylor polynomial. The remainder term, in
Lagrange form, is

Rn,0,fα(x) =
f (n+1)(t)

(n+ 1)!
xn+1 =

α(α− 1) · · · (α− n)(1 + t)α−n−1

(n+ 1)!
xn+1 =

(
α

n+ 1

)
xn+1(1+t)α−n−1

for some t between 0 and x, as claimed.

(b) The remainder term above is quite difficult to pin down. In some special cases,
though, it is reasonable.

i. Show that (
−1/2

n+ 1

)
= (−1)n+1

(
2n+2
n+1

)
22n+2

(this requires level-headed algebraic manipulation. It helps to know what you
are aiming for in advance!).
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Solution: We have
(−1/2
n+1

)
=

(−1
2 )(−3

2 )(−5
2 )···(−(2n−1)

2 )(−(2n+1)
2 )

(n+1)n(n−1)···(2)(1)

= (−1)n+1

2n+1

(2n+1)(2n−1)(2n−3)···(3)(1)
(n+1)n(n−1)···(2)(1)

= (−1)n+1

22n+2

2n+1(n+1)n(n−1)···(2)(1)(2n+1)(2n−1)(2n−3)···(3)(1)
(n+1)n(n−1)···(2)(1)(n+1)n(n−1)···(2)(1)

= (−1)n+1

22n+2

(2n+2)2n(2n−2)···(4)(2)(2n+1)(2n−1)(2n−3)···(3)(1)
(n+1)n(n−1)···(2)(1)(n+1)n(n−1)···(2)(1)

= (−1)n+1

22n+2

(2n+2)!
(n+1)!(n+1)!

= (−1)n+1

22n+2

(
2n+2
n+1

)
.

as claimed.

ii. Deduce that for 0 < x < 1, Rn,0,f−1/2
(x) → 0 as n grows, and that for

−1/2 < x < 0, Rn,0,f−1/2
(x)→ 0 as n grows.

Solution: We have

|Rn,0,f−1/2
(x)| =

∣∣∣∣(−1/2

n+ 1

)∣∣∣∣ |x|n+1|1 + t|−1/2−n−1.

Using (
2n+ 2

n+ 1

)
≤ (1 + 1)2n+2 = 22n+2

we get ∣∣∣∣(−1/2

n+ 1

)∣∣∣∣ ≤ 1

so that

|Rn,0,f−1/2
(x)| ≤

∣∣∣∣ x

1 + t

∣∣∣∣n+1
1√
|1 + t|

for some t between 0 and x.
For 0 < x < 1 we have

|Rn,0,f−1/2
(x)| ≤

(
x

1 + t

)n+1
1√

1 + t
≤ xn+1

since here t < 0.
For each x satisfying −1/2 < x < 0 we have, for t between 0 and x, that
1 + t > 1/2, so |1 + t| > |x| and so

|Rn,0,f−1/2
(x)| ≤

∣∣∣∣ x

1 + t

∣∣∣∣n+1
1√
|1 + t|

≤ 2

∣∣∣∣ x

1 + t

∣∣∣∣n+1

which goes to 0 as n grows (here using |1 + t| > |x|).
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