
Math 10860, Honors Calculus 2

Homework 9 NAME:

Solutions

1. (a) Suppose that f is a function that is defined, and differentiable arbitrarily many
times, on some interval I (finite, infinite, whatever). Let a and x be any two
numbers in I. Suppose that there is some number M > 0 such that |f (n)(ξ)| ≤Mn

for every n ≥ 0 and every ξ ∈ [a, x]. Prove that

Pn,a,f (x)→ f(x) as n→∞.

Solution: We use the Lagrange form of the remainder term (though it should
also be possible to use the integral form). We have that there is some number ξ
between a and x with

|Rn,a,f (x)| =

∣∣∣∣f (n+1)(ξ)(x− a)n+1

(n+ 1)!

∣∣∣∣
≤ (M |x− a|)n+1

(n+ 1)!
,

using the bound given on the absolute value of the (n+ 1)st derivative.

Now using the result (proved earlier) that for any C > 0

lim
n→∞

Cn

n!
= 0,

and the fact that for each a and x, M |x− a| is just a fixed positive constant, we
get that

(M |x− a|)n+1

(n+ 1)!
→ 0

as n→∞, and so |Rn,a,f (x)| → 0 as n→∞. This is equivalent to Pn,a,f (x)→ f(x)
as n→∞.

(b) We saw (in both notes and lectures) that for every x ∈ R,

Pn,0,exp(x)→ exp(x) as n→∞.

Generalize this: for every base b > 0, every a ∈ R, and every x ∈ R, the Taylor
polynomials of f(x) = bx centered at a converge to f(x) as n grows. That is,

Pn,a,b·(x)→ bx as n→∞.
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Solution: It’s useful to first dismiss the case b = 1: here f is the constant function
1, whose Taylor polynomials are all the constant function 1, so clearly the result
holds in this case!

Now we deal with the situation where b 6= 1. Using part a, we need only show
that for each x ∈ R there is an M > 0 such that for all n, f (n)(ξ) ≤Mn for all ξ
between 0 and x, where f(t) = bt.

Now f(t) = et log b, so for each n

f (n)(t) = (log b)net log b = (log b)nbt.

So, using that f is monotone (either increasing if b > 1 or decreasing if b < 1) we
get that for all ξ between 0 and x,

|f (n)(ξ)| ≤ | log b|n max{1, bx} ≤ | log b|n max{1, bx}n.

If we take M = | log b|max{1, bx}, then the hypotheses of part (a) are satisfied,
and we are done.

2. (a) Use Theorem 15.2 of the course notes (connecting continuity and limits of sequences)
to find, for each fixed a > 0, limn→∞ a

1/n.

Solution: Write a1/n as e(log a)/n. We have (log a)/n → 0 as n → ∞, and the
function f(x) = ex is continuous at 0, so by Theorem 15.2 we get limn→∞ a

1/n =
limn→∞ f((log a)/n) = f(0) = 1.

(b) Prove a “squeeze theorem” for sequences:

Let (an), (bn) and (cn) be sequences with (an), (cn) → L. If eventually
(for all n > n0, for some finite n0) we have an ≤ bn ≤ cn, then (bn)→ L
also.

Solution: Fix ε > 0. There is n1, n2 such that n > n1 implies an ∈ (L− ε, L+ ε),
and n > n2 implies cn ∈ (L − ε, L + ε). For n > max{n0, n1, n2} (n0 as in the
statement of the theorem), we have

L− ε < an ≤ bn ≤ cn < L+ ε

so bn ∈ (L− ε, L+ ε).

(c) Use the results of parts (a) and (b) to compute

lim
n→∞

(
2n2 − 1

3n2 + n+ 2

) 1
n

.

Solution: We have (2n2−1)/(3n2 +n+ 2)→ 2/3 as n→∞, so for all sufficiently
large n

0.6
1
n ≤

(
2n2 − 1

3n2 + n+ 2

) 1
n

≤ 0.7
1
n .
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Since, as we have seen previously, both 0.6
1
n , 0.7

1
n → 1 as n → ∞, the squeeze

theorem allows us to conclude

lim
n→∞

(
2n2 − 1

3n2 + n+ 2

) 1
n

= 1.

3. Find the following limits:

(a) limn→∞
n

n+1
. (For this one, you must use the definition of sequence limit).

Solution: We claim that the limit is 1. To show this from the definition, given
ε > 0 we need to find n0 such that n > n0 implies |n/(n + 1)− 1| < ε, which is
equivalent to | − 1/(n + 1)| < ε, which is equivalent to 1/(n + 1) < ε, which is
equivalent to n > (1/ε)− 1; so we may take n0 = (1/ε)− 1.

(b) limn→∞
n
√
n2 + n. (For this and the remaining parts, a soft argument is fine,

meaning, you may freely use theorems proven in lectures and/or notes).

Solution: We claim that the limit is 1. We have n
√
n2 + n = (n2 + n)1/n =

e(log(n
2+n))/n, so (by continuity of the exponential function), it is enough to show

that (log(n2 + n))/n → 0 as n → ∞, n ∈ N, for which it suffices to show
(log(x2 + x))/x→ 0 as x→∞, x ∈ R, which follows quickly from an application
of L’Hôpital’s rule.

(c) limn→∞
(

8
√
n2 + 1− 4

√
n+ 1

)
.

Solution: The limit is 0. We set x = 8
√
n2 + 1 and y = 4

√
n+ 1 = 4

√
n2 + 2n+ 1,

and use

x− y =
x8 − y8

x7 + x6y + x5y2 + x4y3 + x3y4 + x2y5 + xy6 + y7
.

The numerator is n2 + 1− (n2 + 2n+ 1) = −2n, and denominator is the sum of
terms all of which have the property that, on division by n7/4, tend to a constant;
for example

x3y4

n7/4
=

(n2 + 1)3/8(n2 + 2n+ 1)4/8

n7/4
=

(
1 +

1

n2

)3/8(
1 +

2

n
+

1

n2

)4/8

→ 1.

So if we divide the original expression through by n7/4, the numerator tends to
0 while the denominator tends to a constant, leading to the conclusion that the
limit is 0.

(d) limn→∞
(

n
n+1
− n+1

n

)
.

Solution: We have n
n+1
− n+1

n
= n2−(n+1)2

n(n+1)
= −2n+1

n(n+1)
→ 0 as n→∞.
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(e) limn→∞
2n

2

n!
.

Solution: We claim that the limit is infinity. Note that n! < nn so

2n2

/n! > 2n2

/(nn) = 2n2

/2n log2 n = 2n2−n log2 n.

Since n2−n log2 n goes to infinity with n, so does 2n
2−n log2 n, and so so does 2n

2
/n!.

(f) limn→∞
(−1)n

√
n sin(nn)

n+1
.

Solution: In absolute value the nth term is no more than
√
n/(n + 1), which

tends to 0 as n grows, so the limit is 0.

4. A subsequence of a sequence
(a1, a2, a3, . . .)

is a sequence of the form
(an1 , an2 , an3 , . . .)

with n1 < n2 < n3 · · · . In other words, it is a sequence obtained from another sequence
by extracting an infinite subset of the elements of the original sequence, keeping the
elements in the same order as they were in the original sequence.

(a) Consider the sequence(
1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
, · · ·

)
.

For which numbers α is there a subsequence converging to α?

Solution: We claim that there a subsequence converging to α if and only if
α ∈ [0, 1].

If α < 0 or α > 1, there is clearly no subsequence converging to α. If α = 0 we may
take the subsequence (1/2, 1/3, 1/4, 1/5, . . .). So now consider α ∈ (0, 1]. Because
the rationals are dense in (0, α) we can find a sequence of rationals (r1, r2, r3, . . .)
with each ri ∈ (0, α) and with (ri)→ α (simply take r1 to be any rational in (0, α),
r2 to be any rational in (α/2, α), r3 to be any rational in (3α/4, α), etc.).

Now note that each rational in (0, 1) appears infinitely often in the sequence(
1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
, · · ·

)
;

for example, 1/7 reappears as 2/14, 3/21, etc.. So r1 can be found somewhere in
the sequence, and r2 can be found somewhere later in the sequence, and r3 can
be found somewhere later still in the sequence, and so on, giving a subsequence
converging to α.
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(b) Now consider the same sequence as in part (a), except remove all duplicated terms,
so that it begins (

1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
,
1

7
, · · ·

)
.

Now for which numbers α is there a subsequence converging to α?

Solution: We can’t use the same proof as in part (a), because no rational appears
more than once in the sequence. However, the result is still the same: there a
subsequence converging to α if and only if α ∈ [0, 1].

As before, trivially there is no subsequence converging to any α < 0 or α > 1. We
get α = 0 and α = 1 by considering the same subsequences as in part (a).

For α ∈ (0, 1): Because the rationals are dense, there is a rational number r1 in
the sequence that lies in (α− α/2, α + α/2).

Now we look for a later rational in the sequence that lies in (α−α/4, α+α/4). By
density we know that there is not just one rational number in (α− α/4, α + α/4),
there are in fact infinitely many. So at least one of those infinitely many must
occur in our sequence after r1 occurs; take any one such to be r2.

By the same argument, we can find a later (later than r2) rational r3 in the
sequence that lies in (α − α/8, α + α/8). Continuing in this manner, we get a
subsequence from our given sequence that converges to α.

5. (a) Prove that if 0 < a < 2 then a <
√

2a < 2.

Solution: For positive a, a <
√

2a iff a2 < 2a iff a < 2, and
√

2a < 2 iff 2a < 4
iff a < 2; so, since a is both positive and less than 2, we have a <

√
2a < 2.

(b) Prove that the sequence

√
2,

√
2
√

2,

√
2

√
2
√

2,

√
2

√
2

√
2
√

2, . . .

converges.

Solution: The sequence can be defined recursively by

a1 =
√

2, an+1 =
√

2an for n ≥ 1.

Clearly all an are positive. We prove by induction on n that an < 2. The base
case is clear. For the inductive step, since (by induction, and earlier observation
about positivity) we have 0 < an < 2, we have from part a) that

√
2an < 2, i.e.

that an+1 < 2, completing the induction.

We also observe that (an) is increasing. Indeed, since 0 < an < 2 (as proved
above), we have immediately from part a) that an <

√
2an = an+1.

So (an)∞n=1 is increasing and bounded above, and so tends to a limit.
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(c) Let an be the nth term of the above sequence, and let ` = limn→∞ an. Carefully
applying a theorem proved in lectures, find `.

Solution: Consider the function f(x) =
√

2x on (0,∞). It’s continuous, and so in
particular is continuous at ` (which is certainly positive). Now since (an)→ `, we
have that (f(an))→ f(`) =

√
2`. But also (f(an)) = (an+1)→ `, so by uniqueness

of limits we have ` =
√

2`, implying ` = 2.

6. This question provides a useful estimate on n!: n! ≈ (n/e)n.

(a) Show that if f : [1,∞) is increasing then

f(1) + · · ·+ f(n− 1) <

∫ n

1

f(x)dx < f(2) + · · ·+ f(n).

Solution: An upper bound on
∫ n

1
f(x)dx is provided by U(f, P ) where P is the

partition {1, 2, 3, . . . , n}. Since f is increasing, sup{f(x) : x ∈ [i, i+ 1]} = f(i+ 1),
and so

U(f, P ) = f(2) + · · ·+ f(n)

(notice that the difference between consecutive points of the partition is 1). This
shows ∫ n

1

f(x)dx < f(2) + · · ·+ f(n).

For the other direction, a lower bound on
∫ n

1
f(x)dx is provided by L(f, P ) where

P is the same partition as before. Again since f is increasing, inf{f(x) : x ∈
[i, i+ 1]} = f(i), and so

L(f, P ) = f(1) + · · ·+ f(n− 1).

This shows

f(1) + · · ·+ f(n− 1) <

∫ n

1

f(x)dx.

(b) By taking f = log deduce that

nn

en−1
< n! <

(n+ 1)n+1

en
.

Solution: We have
∫

log x dx = x log x− x, so∫ n

1

log x dx = [x log x− x]nx=1 = n log n− n− 1 log 1 + 1 = n log n− n+ 1.

We also have log 1 + · · ·+ log(n− 1) = log(n− 1)! and log 2 + · · ·+ log n = log n!.

Since log is increasing, we can apply the upper bound for part a) to get

n log n− n+ 1 ≤ log n!
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which on exponentiating yields

nn

en−1
< n!.

And applying the lower bound from part a) we have

log(n− 1)! < n log n− n+ 1

or, changing index from n to n+ 1,

log n! < (n+ 1) log(n+ 1)− n,

which on exponentiating yields

n! <
(n+ 1)n+1

en
.

(c) Deduce that

lim
n→∞

n
√
n!

n
=

1

e
.

Solution: From the lower bound in part b) we have

n
√
n!

n
>

(
1

e

)
e1/n.

From the upper bound we have

n
√
n!

n
<

(
1

e

)
n
√
n+ 1

(
1 +

1

n

)
Since e1/n → 1 and n

√
n+ 1

(
1 + 1

n

)
→ 1 as n → ∞, we get from the obvious

squeeze theorem that

lim
n→∞

n
√
n!

n
=

1

e
.

7. The Harmonic number Hn is the number Hn =
∑n

k=1
1
k

= 1 + 1
2

+ 1
3

+ · · · + 1
n
. This

exercise gives a very useful estimate on Hn, namely Hn ≈ log n.

(a) Notice that H1 = 1, H2 = 1 + 1
2

and

H4 = 1 +
1

2
+

1

3
+

1

4
≥ 1 +

1

2
+

1

4
+

1

4
= 1 +

2

2
.

Generalize this: prove that for all k ≥ 0, H2k ≥ 1 + k
2

(and so (Hn)∞n=1 diverges to
+∞).
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Solution: We have

H2k = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

2k

≥ 1 +
1

2
+

1

4
+

1

4
+ · · ·+ 1

2k
+ · · ·+ 1

2k
,

where we lower bound 1/3 by 1/4 (so the sum has 2 1/4’s), we lower bound each of
1/5, 1/6 and 1/7 by 1/8 (so the sum has 4 1/8’s), and so on up to lower bounded
each of 1/(2k−1 + 1), 1/(2k−1 + 2), · · · 1/(2k−1 + (2k−1 − 1)) by 1/2k (so the sum
has 2k−1 1/2k’s). So, continuing the chain of inequalities from above,

H2k ≥ 1 +
1

2
+

1

4
+

1

4
+ · · ·+ 1

2k
+ · · ·+ 1

2k

= 1 +
1

2
+ 2

1

4
+ 4

1

8
+ · · ·+ 2k−1 1

2k

= 1 +
k

2
,

as claimed.

(b) Prove that for all natural numbers n,

1

n+ 1
< log(n+ 1)− log n <

1

n
.

Solution: We’ll prove

1

x+ 1
< log(x+ 1)− log x <

1

x

for x ∈ [1,∞), which is equivalent to

1

(1/y) + 1
< log(1/y + 1)− log 1/y <

1

1/y

for y ∈ (0, 1]. After a little re-arranging this becomes

1− 1

1 + y
< log(1 + y) < y

for y ∈ (0, 1].

To prove this, consider function f(y) = 1 − 1/(1 + y), g(y) = log(1 + y) and
h(y) = y defined on [0, 1]. They all agree at 0 (with value 0), but on (0, 1] we
have f ′(y) = 1

(1+y)2
, g′(y) = 1

1+y
, h′(y) = 1, so f ′(y) < g′(y) < h′(y) on (0, 1]. from

basic properties of the derivative it follows that f(y) < h(y) < g(y) on (0, 1], as
required.
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(c) Deduce from part (b) that the sequence (Hn− log n)∞n=2 is decreasing and bounded
below by 0.

Solution: First we check that the sequence is decreasing: we have

Hn+1 − log(n+ 1) < Hn − log n

if and only if
1

n+ 1
< log(n+ 1)− log n,

which was established in part b).

To get that it is bounded below by 0, we use the other inequality from part b) to
get, via a telescoping sum,

1

1
+

1

2
+ · · ·+ 1

n
> (log 2− log 1) + (log 3− log 2) + · · ·+ (log(n+ 1)− log n)

= log(n+ 1)

so that

Hn − log n > log(n+ 1)− log n >
1

n+ 1
> 0

(the penultimate inequality above using the first inequality from part b)).

(d) Explain why you can deduce that there is a number γ ≥ 0 such that

lim
n→∞

(Hn − log n) = γ.

(This number is known as the Euler-Mascheroni constant, and is approximately
0.57721. It is not known whether γ is rational or irrational.)

Solution: (Hn− log n)∞n=2 is decreasing and bounded below by 0, so by a theorem
proved in the lectures we know that

lim
n→∞

(Hn − log n) exists and equals inf{Hn − log n : n ∈ N}, which is ≥ 0.

(Actually, in the lectures we proved that if (an) is increasing and bounded above
then limn→∞ an exists and equals inf{an : n ∈ N}, but the proof of the analogous
statement used here is identical.
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