
Math 10860, Honors Calculus 2

Midterm 1 information

Spring 2019

The first midterm will be

Monday March 2, in class.

It will cover everything that we have covered in class this semester up to the beginning of
class on Wednesday, February 26. In the course notes, that is Chapters 10, 11 and 12; in
terms of homeworks and quizzes, it is everything that was covered on homeworks 1 through 6
and quizzes 1 through 6.

Some of the exam will be problems, some will be definitions, and some will be proofs of
results from class. Here are the results that I am thinking of:

• Every lower Darboux sum is at most as large as every upper Darboux sum (and, closely
related: refining a partition increases the lower Darboux sum and decreases the upper
Darboux sum)

• The sum of integrable functions is integrable

• If f is integrable on [a, b], and c ∈ (a, b), then f is integrable on both [a, c] and [c, b],
and (going the other direction), if f is integrable on [a, c] and [c, b] then f is integrable
on [a, b]

• cf is integrable when f is

• Monotone functions are integrable

• Uniformly continuous functions are integrable1

• The comparison theorem for improper integrals

•
∫ x
a
f is continuous as a function of x

• FTOC part 2 2

• The inverse of a continuous function is continuous3

1While you should understand the proof that uniform continuity on a closed interval implies continuity, I
won’t ask about the proof on the exam.

2While you should understand the proof of FTOC part 1, I won’t ask about the proof on the exam.
3While you should understand the proof that the inverse of a differentiable function is differentiable

(modulo some obvious condition), I won’t ask about the proof on the exam.
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• If a continuous function defined on an interval is invertible, it must be monotone

• All solutions to f ′ = f

• All solutions to f ′′ + f = 0

The rest of this document is a collection of practice problems. The first set are focussed
on definitions, and you are supposed to find these very easy! The rest are problems that
vary from reasonable to somewhat harder to just plain hard. There are no practice questions
asking you to proof various facts from the notes — you should be reviewing these in the
notes.

I will endeavor as I write the exam to have no more than one problem that is in the “just
plain hard” category!

Definitions

1. (a) Say what is a partition of an interval [a, b] with a < b.

Solution: A partition of [a, b] is a set of numbers {t0, t1, . . . , tn} with a = t0 <
t1 < · · · < tn = b.

(b) For a partition P of [a, b], and a bounded function f : [a, b] → R, what is the
upper Darboux sum U(f, P )?

Solution: The upper Darboux sum U(f, P ) is

U(f, P ) =
n∑
i=1

Mi(ti − ti−1)

where Mi = sup{f(x) : x ∈ [ti−1, ti]}.

(c) If P is a partition of [a, b] and Q is another partition of [a, b] that includes all
the points of P (and perhaps some more), what is the relationship between
L(f, P ), U(f, P ), L(f,Q) and U(f,Q)?

Solution: We have the relationship

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

(d) Give the definition of bounded f being integrable on [a, b], and say what the value
of the integral is.

Solution: f is integrable on [a, b] if

sup{L(f, P ) : P a partition of [a, b]} = inf{U(f, P ) : P a partition of [a, b]},

and the value of the integral is the common value above (either sup{L(f, P ) :
P a partition of [a, b]} or inf{U(f, P ) : P a partition of [a, b]})
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Note that is is not correct to define f being integrable by “for all ε > 0 there exists
a partition P such that U(f, P )− L(f, P ) < ε”; this is a fact about the integral,
derived from the definition, but not the definition.

Nor is it correct to begin your answer “if f is integrable then . . .”. If you do, then
you are giving a consequence of integrability, not the definition.

2. (a) State the first fundamental theorem of calculus, paying attention to the necessary
hypotheses.

Solution: The first fundamental theorem of calculus states that

If f is integrable on [a, b], and F : [a, b] → R is defined by F (x) =∫ x
a
f(t)dt, then if f is continuous at c it follows that F is differentiable at

c, and that F ′(c) = f(c).

(Or, slightly more generally:

If f is integrable on an interval I, a is in I, and F : I → R is defined
by F (x) =

∫ x
a
f(t)dt, then if f is continuous at c it follows that F is

differentiable at c, and that F ′(c) = f(c).)

Note that this is a stronger statement than “if f is continuous on [a, b] then F
is differentiable on [a, b] and F ′ = f”; one of the strengths of the fundamental
theorem of calculus is that to conclude differentiability of F at a point, one only
needs to know continuity of f at a single point, not on any interval.

(b) State the second fundamental theorem of calculus, paying attention to the necessary
hypotheses.

Solution: The second fundamental theorem of calculus states that

If f is integrable on [a, b], and g is a function g : [a, b] → R such that

g′ = f on [a, b], then
∫ b
a
f(x)dx = g(b)− g(a).

Note that one needs the hypothesis of integrability. Without it, the theorem
would imply (among other things) that any function f that has an antiderivative
is automatically integrable. But this is not the case; look up “Volterra’s function”
for an example.

3. Let f : [a, b] → R be bounded and integrable. Set F (x) =
∫ x
a
f(t) dt for x ∈ [a, b].

For each of the following, either briefly justify an affirmative answer, or give either an
example or a brief explanation to show that the answer is negative.

(a) F is integrable on [a, b].

Solution: Yes. We know that for any integrable f , the function F defined as
above as the integral of f is continuous; and we also know that any continuous
function is integrable.
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(b) F is differentiable on [a, b], with F ′ = f .

Solution: No. Certainly, if we assume that f is continuous, then F is differentiable,
with F ′ = f (by the fundamental theorem of calculus); but if f is not continuous,
then there’s no guarantee that F is differentiable or, if it is, that F ′ = f .

For example, if f = 0 except at one point x, where it takes value 1, then F = 0
everywhere, so is differentiable, but F ′ 6= f at x.

Or, if f = 0 on x ≤ 0 and f = 1 on x > 0, then F is easily seen not to be
differentiable at 0.

(c) F is increasing on [a, b]

Solution: No. If f is positive, then F will be increasing (it is accumulating area),
but if f is ever negative it will lead to decreasing F . For example, consider f = −1
on [0, 1]; the associated F is decreasing.

(d) Knowing F , it is possible to uniquely determine f

Solution: No. If f is known to be continuous then it is uniquely determined by
F , since f can be recovered from F by F ′ = f (the derivative is unique).

But if f is not known to be continuous, then F does not determine f , the reason
being that if f ? is obtained from f by changing the function at finitely many
values, then the integral of f ? is equal to the integral of f over any interval. So F
cannot distinguish between f and f ?.

4. (a) What does it mean to say that a function f is one-to-one on its domain?

Solution: This means that for every b ∈ Domain(f) there exists a unique a in
Range(f) such that f(a) = b. An equivalent definition is that if a1, a2 in the
domain of f are distinct (satisfy a1 6= a2), then f(a1) 6= f(a2).

(b) What can you say about a continuous, one-to-one function whose domain is an
interval?

Solution: One can say many things (such that it is invertible, and that the inverse
is continuous), but what I was thinking of was the substantial fact that we proved,
that such an f must be monotone (either strictly increasing or strictly decreasing).

(c) Let f : (a, b)→ R be continuous and invertible with inverse f−1. Let c be a point
in the domain of f−1. Is f−1 necessarily continuous at c, and if not, what extra
condition(s) need to be added to ensure that it is?

Solution: Yes, f−1 is necessarily continuous at c; we proved this in class.

(d) Let f : (a, b) → R be differentiable and invertible with inverse f−1. Let c be a
point in the domain of f−1. Is f−1 necessarily differentiable at c, and if not, what
extra condition(s) need to be added to ensure that it is?
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Solution: No, f−1 is not necessarily differentiable at c. If the condition that
f ′(f−1(c)) 6= 0 is added, then (as we proved in class) it becomes the case that f−1

is differentiable at c.

Note that it is not a proper answer here to say:

“If f ′(f−1(c)) = 0 then f−1 is not differentiable at c.”

and leave it at that; this leaves open the possibility that there are also some places
where f ′(f−1(c)) 6= 0 for which f−1 is not differentiable at c.

5. (a) Give the definition of the function log, including a statement of its domain and
range.

Solution: log : (0,∞)→ R is defined by

log x =

∫ x

1

dt

t
.

Its domain is (0,∞) and its range is R.

(b) Give the definition of the function exp, including a statement of its domain and
range.

Solution: exp : R→ (0,∞) is defined by

expx = log−1 x

(exp is the inverse of log). Its domain is R and its range is (0,∞).

(c) How is the number e defined?

Solution: e can either be defined to be the unique number x such that log x = 1
(i.e., it is defined by the relation

∫ e
1
dt
t

= 1), or, equivalently, it can be defined as
exp(1).

(d) For a positive number a and a real number b, what does the expression ab mean?

Solution: It means exp(b log a) (or eb log a)

6. (a) How is the number π defined?

Solution: Either π is defined by the relation

π

2
=

∫ 1

−1

√
1− t2dt,

or by π = 2
∫ 1

−1

√
1− t2dt.
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(b) How is the function cos defined? (This needs to be a multi-step definition!)

Solution: On [0, π], cosx is defined to be A−1(x/2) where A : [−1, 1]→ [0, π/2]
is defined by

A(x) =
x
√

1− x2
2

+

∫ 1

x

√
1− x2 dx.

For x ∈ [π, 2π] we defined cosx to be equal to cos(2π − x).

For x 6∈ [0, 2π] we define cosx to be cos(x+ 2nπ) where n is any integer satisfying
x+ 2nπ ∈ [0, 2π].

7. Complete these identities.

(a) ea+b = . . .

Solution: ea+b = eaeb.

(b) log ab = . . .

Solution: log ab = b log a.

(c) sin(x− y) = . . .

Solution: sin(x− y) = sin x cos y − sin y cosx.

8. (a) Give the definition of a function f being continuous at a point a.

Solution: f is continuous at a if for all ε > 0 there is δ > 0 such that for all x, if
|x− a| < δ then |f(x)− f(a)| < ε.

(b) Give the definition of a function f being continuous on an interval I.

Solution: f is continuous on an interval I if it is continuous at every point in I.

(c) Give the definition of a function f being uniformly continuous on an interval I.

Solution: f is uniformly continuous on an interval I if for every ε > 0 there is
δ > 0 such that for all x, y in the interval, if |x− y| < δ then |f(x)− f(y)| < ε.

(d) What is the difference between the last two definitions?

Solution: For continuity on an interval, for each x in the interval, for each ε > 0
we have to find a δ > 0 with the property that for all y within δ of x, f(y) is
within ε of f(x); δ is allowed to depend on x as well as on ε.

For uniform continuity on an interval, for each ε > 0 we have to find a δ > 0 with
the property that for all x, y within δ of each other, f(y) is within ε of f(x); δ is
only allowed to depend ε, not on x.
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Problems

1. (a) Express sinx− sin y as a product of two trigonometric functions.

Solution: We have

sin(a+ b) = sin a cos b+ cos a sin b

and
sin(a− b) = sin a cos b− cos a sin b

so
sin(a+ b)− sin(a− b) = 2 cos a sin b.

Setting x = a+ b and y = a− b, get a = (x+ y)/2 and b = (x− y)/2, so

sinx− sin y = 2 cos

(
x+ y

2

)
sin

(
x− y

2

)
.

(b) Express sin
(
k + 1

2

)
x− sin

(
k − 1

2

)
x as a product of two trigonometric functions.

Solution: Apply the previous result with the role of x played by (k + 1/2)x and
the role of y played by (k − 1/2)x. We get

sin

(
k +

1

2

)
x− sin

(
k − 1

2

)
x = 2 cos kx sin

x

2
.

(Or, easier: write sin
(
k + 1

2

)
x− sin

(
k − 1

2

)
x as sin

(
kx+ x

2

)
− sin

(
kx− x

2

)
, and

use the angle summation formulae. One gets the same result with this method.)

(c) Prove that for natural numbers n,

cosx+ cos 2x+ · · ·+ cosnx =
sin
(
n+ 1

2

)
x

2 sin x
2

− 1

2
.

Solution: A proof by induction is possible, with part (b) in the case k = 1 giving
the base case, and part (b) in general giving the induction step.

Or, easier: we have, using the result of the last part for the first line, and the fact
that the sum is telescoping for the second,

2 cosx sin
x

2
+ · · ·+ 2 cosnx sin

x

2
=

n∑
k=1

(
sin

(
k +

1

2

)
x− sin

(
k − 1

2

)
x

)
= sin

(
n+

1

2

)
x− sin

x

2
.

Dividing both sides by 2 sin x
2

gives the claimed identity.

2. Recall that we defined sin first on the interval [0, π] (via some complicated expression),
and we observed that sin 0 = sin π = 0. We then extended the definition of sin to
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[0, 2π] by declaring that for all θ ∈ [π, 2π], sin θ = − sin(2π − θ)4. Finally, we defined
sin for all reals by periodic extension: given any θ ∈ R, there is an integer n such that
θ + 2πn ∈ [0, 2π]; declare sin θ to be the same value as sin(2nπ + θ).5

More generally, let f : [0, π]→ R be any function (continuous or otherwise) satisfying
f(0) = f(π) = 0. Extend f to [0, 2π] by declaring that for all x ∈ [π, 2π], f(x) =
−f(2π − x); then extend the definition of f to all reals by periodic extension (as
described above)6. Prove that f is an odd function.7

Solution: Consider an arbitrary x ∈ R. There is an integer n such that x+2nπ ∈ [0, 2π].
Consider two cases.

Case 1 (x+ 2nπ ∈ [0, π]). In this case by definition we have

f(2π − (x+ 2nπ)) = −f(x+ 2nπ).

But by periodicity, f(2π − (x + 2nπ)) = f(−x + 2(1 − n)π) = f(−x) and
f(x+ 2nπ) = f(x), so

f(−x) = −f(x),

as required.

Case 2 (x+ 2nπ ∈ [π, 2π]). In this case by definition we have

f(x+ 2nπ) = −f(2π − (x+ 2nπ)).

But now exactly as in Case 1 we have f(−x) = −f(x).

3. Suppose that f is integrable on [a, b], with a < b.

(a) Show that there is x ∈ [a, b] with ∫ x

a

f =

∫ b

x

f.

Solution: Consider the function F : [a, b] → R defined by F (x) =
∫ x
a
f . We

know from a theorem from class that F is continuous (NOTE: this is not the

fundamental theorem of calculus!). Since F (0) = 0 and F (b) =
∫ b
a
f , from the

intermediate value theorem we have that there is an x ∈ [a, b] with F (x) = 1
2

∫ x
a
f .

Basic linearity properties of the integral now show that for any such x,∫ x

a

f =

∫ b

x

f.

4Note that we have to be careful at θ = π, where sin has already been defined to be 0; but 2π − π = π, so
at θ = π the new definition says that sinπ = − sinπ = −0 = 0, which agrees with the old definition

5If θ is not an integer multiple of 2π, there is a unique n that works. If θ is a multiple of 2π then there
two such n’s, say n1 and n2, with 2πn1 = 0 and 2πn2 = 2π. This does not create an ambiguity since
sin 0 = sin 2π = 0.

6As with sin, all this is well-defined, and for the same reasons exactly.
7This justifies our claim in class that sin(−x) = − sin(x), that was justifiably questioned at the time it

was made. One can similarly argue that cos is an even function.
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(To be a little more precise: if
∫ b
a
f 6= 0 then the intermediate value theorem gives

that there is x ∈ (a, b) with
∫ x
a
f =

∫ b
x
f ; and if

∫ b
a
f = 0 then we may take either

x = a or x = b to get
∫ x
a
f =

∫ b
x
f).

(b) What condition on f ensures that it is possible to find such an x in (a, b)? Give
examples to show that if this condition is not satisfied, then

• it is sometimes possible to find such an x in (a, b), and

• it is sometimes not possible to find such an x in (a, b).

Solution: As observed in part (a), if
∫ b
a
f 6= 0 then yes, such x can be guaranteed

to be in (a, b). If
∫ b
a
f = 0 then no such guarantee can be made. Consider, for

example, f given by f(x) = sinx with a = 0 and b = 2π. We have
∫ 2π

0
sinxdx = 0,

and both x = 0 and x = 2π have the property that∫ x

0

sin tdt =

∫ 2π

x

sin tdt.

But if x ∈ (0, 2π) we have∫ x

0

sin tdt = 1− cosx and

∫ 2π

x

sin tdt = cosx− 1

so
∫ x
0

sin tdt =
∫ 2π

x
sin tdt is equivalent to 1− cosx = cosx− 1 or cosx = 1, which

has no solution in (0, 2π).

On the other hand, the constant zero function is an example of a function with∫ b
a
f = 0, but for which every x satisfies the condition of the question.

4. Let f : [a, b]→ R be monotone.

(a) Explain why f is bounded.

Solution: If f is monotone increasing then (by definition) f(a) < f(x) < f(b) for
all x ∈ (a, b), so f is bounded above by f(b), and below by f(a). Similarly if f is
monotone decreasing then it is bounded above by f(a), and below by f(b).

(b) Prove that
∫ b
a
f exists.

Solution: This was (basically) Homework 1, Question 5 (to which a solution has
already been posted).

5. (a) Let f : [a, b]→ R be a differentiable function that is never 0. Assuming8 that f ′/f

8There is a subtlety in this question. There’s a (hopefully fairly obvious) function g with g′ = f ′/f , and
once g has been identified, the integral can be evaluated using FTOC part 2. The subtlety is that even after
a g with g′ = f ′/f has been found, there is no guarantee that f ′/f is integrable. There are examples of
differentiable functions whose derivatives are not integrable. If V is such a function (I use V here because the
first example of such a function was discovered by Volterra, and is called Volterra’s function) then while it is

true to say that V =
∫
V ′ (V is a primitive of V ′), it is not true to say that

∫ b

a
V ′ = V (b)− V (a), since the

left-hand side exists but the right-hand side doesn’t. Remember that the FTOC part 2 says that if there’s

a function g with g′ = f and f is integrable then
∫ b

a
f = g(b) − g(a). So it is necessary to add the caveat

“assuming that f ′/f is integrable on [a, b]” (which I had left out in an earlier version of this document).
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is integrable on [a, b], find a very simple expression for∫ b

a

f ′(t)

f(t)
dt.

Solution: Note that f is continuous (since it is differentiable) and never zero, so
by IVT it is either always positive or always negative. If it is always positive then
log f(x) exists and is continuous, and

(log f(x))′ =
f ′(x)

f(x)
.

If it is always negative then log−f(x) exists and is continuous, and

(log−f(x))′ =
−f ′(x)

−f(x)
=
f ′(x)

f(x)
.

So in either case

(log |f(x)|)′ = f ′(x)

f(x)
.

BY FTOC(2), ∫ b

a

f ′(t)

f(t)
= log |f(x)|.

(b) Use part (a) to evaluate ∫ π/3

π/6

dx

(sinx)(cosx)
.

Solution: 1/(sinx cosx) = sec2 x/ tanx, and so since tan′ = sec2 and tan is never
0 on [π/6, π/3] (in fact is always positive) we get∫ π/3

π/6

dx

(sinx)(cosx)
= log tan(π/3)− log tan(π/6) = log

√
3− log(

√
3/3) = log 3.

6. Suppose that f is a differentiable function, with f(0) = 0 and 0 < f ′ ≤ 1. Prove that
for all x ≥ 0 we have ∫ x

0

f 3 ≤
(∫ x

0

f

)2

(a) assuming that f ′ is integrable, and

(b) not assuming that f ′ is integrable (it may not be — there exist examples of
functions whose derivatives are not integrable, such as Volterra’s function (which
has a wikipedia page)).

Solution: Probably the most sensible approach does not make any assumptions on f ′,
so it answers parts (b) and (a) simulytaneously.

We will use a lemma that we saw last semester, as an application of the Mean Value
Theorem:
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If h1, h2 : [a,∞)→ R are both differentiable, if h1(a) = h2(a), and if h′1(x) ≥
h′2(x) on [a,∞) (considering derivative from above at a) then h1(x) ≥ h2(x)
on [a,∞).

(The proof is: suppose not, so that there is some b > a with h1(b) < h2(b). Apply the
MVT to the function h1 − h2 on [a, b] to find a c ∈ (a, b) with

(h1 − h2)′(c) =
(h1 − h2)(b)− (h1 − h2)(a)

b− a
< 0,

so h′1(c) < h′2(c), a contradiction.)

Note that since f is differentiable, it is continuous, so f 3 is continuous, and so the
function h2 defined by h2(x) =

∫ x
0
f 3 is differentiable, and the function h1 defined by

h1(x) =
(∫ x

0
f
)2

is also differentiable (being the composition of the square function,
which is differentiable, and the function defined by

∫ x
0
f , which is differentiable by the

continuity of f).

We have h2(0) = h1(0) = 0, so to establish h2(x) ≤ h1(x) for x ≥ 0, by the lemma it
suffices to show h′2(x) ≤ h′1(x) for x ≥ 0. By the fundamental theorem of calculus (and
the chain rule) this is equivalent o

f(x)3 ≤ 2

(∫ x

0

f

)
f(x).

We will now establish this. Since f(0) = 0 and f ′ > 0, it follows that f(x) > 0 for
x > 0 (an easy application of the mean value theorem). So proving the above inequality
(which is easily seen to be an equality at x = 0) is equivalent to proving

f(x)2 ≤ 2

(∫ x

0

f

)
for x > 0, which is implied by

f(x)2 ≤ 2

(∫ x

0

f

)
for x ≥ 0. So this is what we now work to establish. We apply the lemma above
with now the role of h2 being played by f(x)2 (which, as we have already noted, is
differentiable) and the role of h2 being played by 2

(∫ x
0
f
)

(also differentiable). We have
h2(0) = h1(0) = 0, so to establish h2(x) ≤ h1(x) for x ≥ 0, by the lemma it suffices to
show h′2(x) ≤ h′1(x) for x ≥ 0, which is equivalent to

2f(x)f ′(x) ≤ 2f(x).

This is evident at x = 0; for x > 0 it is equivalent (via f(x) > 0 for x > 0) to f ′(x) ≤ 1,
which is given.

We conclude that indeed
∫ x
0
f 3 ≤

(∫ x
0
f
)2

.
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7. (a) Suppose that f and g are both one-to-one. Show that f ◦ g is also one-to-one.

Solution: Let a, b be two points in the domain of g, such that g(a), g(b) are in the
domain of f (i.e., a, b are two points in the domain of f ◦ g). By one-to-oneness of
g we have g(a) 6= g(b). But then by one-to-oneness of f we have f(g(a)) 6= f(g(b)).
So, a 6= b implies (f ◦ g)(a) 6= (f ◦ g)(b), that is, f ◦ g is one-to-one.

(b) Suppose that f and g are both one-to-one. Explicitly express (f ◦ g)−1 in terms of
f−1 and g−1.

Solution: Suppose c is in the domain of (f ◦ g)−1. That means that c is in the
range of f ◦ g. This means that there is (unique, by one-to-oneness of f) b such
that (b, c) ∈ f with also (a, b) ∈ g. The function that sends c to a is g−1 ◦ f−1
(first send c to b, then send b to a). So

(f ◦ g)−1 = g−1 ◦ f−1

(c) If g(x) = 1 + f(x), explicitly express g−1 in terms of f−1.

Solution: Here g is p ◦ f where p(x) = 1 + x. We have p−1(x) = x − 1, so (by
part (b))

g−1(x) = (p ◦ f)−1(x) = (f−1 ◦ p−1)(x) = f−1(x− 1).

8. (a) Decide which of these integrals exist (have finite values):
∫ 1

0
dx

x
√
1+x

,
∫∞
1

dx
x
√
1+x

,∫∞
0

dx
x
√
1+x

.

Solution: For 0 < x ≤ 1 we have

1

2x
≤ 1

x
√

1 + x

(after a little algebra this is seen to actually hold for 0 < x ≤ 3). We also have∫ 1

ε

dx

2x
=

1

2
[log x]1x=ε = − log ε = log

1

ε
.

It follows that ∫ 1

ε

dx

x
√

1 + x
≥ log

1

ε
.

Since log(1/ε)→ +∞ as ε→ 0+, it follows that the improper integral∫ 1

0

dx

x
√

1 + x

does not exist.

On the other hand we have

1

x5/4
≥ 1

x
√

1 + x
≥ 0
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for all x ≥ 1, so by comparison with
∫∞
1

dx
x5/4

(which is finite, as we have seen in
class) we get that ∫ ∞

1

dx

x
√

1 + x

exists.

For ∫ ∞
0

dx

x
√

1 + x

to exist we need both
∫ 1

0
dx

x
√
1+x

and
∫∞
1

dx
x
√
1+x

to exist; since only one of them
does, the final integral does not exist.

(b) Find the value of ∫ a

0

dx

xr

for all r ∈ (0, 1) and a > 0 (your answer will depend on both a and r).

Solution: ∫ a

ε

dx

xr
=

[
x1−r

1− r

]a
x=ε

=
a1−r − ε1−r

1− r
.

Since ε1−r → 0 as ε→ 0 for all r ∈ (0, 1), we get that∫ a

0

dx

xr
= lim

ε→0+

∫ a

ε

dx

xr
=

a1−r

1− r
.
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