Math 10860, Honors Calculus 2

Midterm 2 practice problem solutions

Spring 2020

1. Let

$$
I_{n}=\int x^{n} \sin x d x
$$

(a) Find I_{0} and I_{1}.

Solution: $I_{0}=\int \sin x d x=-\cos x$, while (via integration by parts)

$$
I_{1}=\int x \sin x d x=-x \cos x+\int \cos x d x=-x \cos x+\sin x
$$

(b) Find a reduction formula that expresses I_{n+2} in terms of I_{n} for $n \geq 0$.

Solution: We have, doing integration by parts twice,

$$
\begin{aligned}
I_{n+2} & =\int x^{n+2} \sin x d x \\
& =-x^{n+2} \cos x+(n+2) \int x^{n+1} \cos x d x \\
& =-x^{n+2} \cos x+(n+2)\left[x^{n+1} \sin x-(n+1) \int x^{n} \sin x d x\right] \\
& =-x^{n+2} \cos x+(n+2) x^{n+1} \sin x-(n+2)(n+1) I_{n}
\end{aligned}
$$

(c) Find $\int x^{5} \sin x d x$.

Solution:

$$
\begin{aligned}
\int x^{5} \sin x d x & =I_{5} \\
& =-x^{5} \cos x+5 x^{4} \sin x-20 I_{3}
\end{aligned}
$$

Since

$$
\begin{aligned}
I_{3} & =-x^{3} \cos x+3 x^{2} \sin x-6 I_{1} \\
& =-x^{3} \cos x+3 x^{2} \sin x+6 x \cos x-6 \sin x
\end{aligned}
$$

we get

$$
\int x^{5} \sin x d x=-x^{5} \cos x+5 x^{4} \sin x+20 x^{3} \cos x-60 x^{2} \sin x-120 x \cos x+120 \sin x .
$$

2. Find the following integrals:
(a)

$$
\int \log ^{3} x d x
$$

Solution: One approach is parts, with $d v=d x$ and $u=\log ^{3} x$, so $v=x$ and $d u=\left(3 \log ^{2} x\right) / x d x$, leading to

$$
\int \log ^{3} x d x=x \log ^{3} x-3 \int \log ^{2} x d x
$$

Now again we use parts, with $d v=d x$ and $u=\log ^{2} x$, so $v=x$ and $d u=$ $(2 \log x) / x d x$, leading to

$$
\int \log ^{3} x d x=x \log ^{3} x-3 x \log ^{2} x+6 \int \log x d x
$$

Finally, use parts again, with $d v=d x$ and $u=\log x$, so $v=x$ and $d u=1 / x d x$, leading to

$$
\int \log ^{3} x d x=x \log ^{3} x-3 x \log ^{2} x+6 x \log x-6 x
$$

(b)

$$
\int \frac{\sqrt{1-x}}{1-\sqrt{x}} d x
$$

Solution: Start with $u=\sqrt{x}$, so $d u=(1 / 2 \sqrt{x}) d x=(1 / 2 u) d x$, so $d x=2 u d u$. Also $1-x=1-u^{2}$, so integral becomes

$$
2 \int \frac{u \sqrt{1-u^{2}}}{1-u} d u
$$

Now try $u=\sin t$, so $d u=\cos t d t$, to get

$$
2 \int \frac{\sin t \cos ^{2} t}{1-\sin t} d t=2 \int \frac{\sin t(1-\sin t)(1+\sin t)}{1-\sin t} d t=2 \int\left(\sin t+\sin ^{2} t\right) d t
$$

The value of this last is $-2 \cos t+t-\frac{\sin 2 t}{2}=-2 \cos t+t-\sin t \cos t$. Going back to u, get

$$
-2 \cos \left(\sin ^{-1} u\right)+\sin ^{-1} u-u \cos \left(\sin ^{-1} u\right)=-2 \sqrt{1-u^{2}}+\sin ^{-1} u-u \sqrt{1-u^{2}}
$$

Going back to x, get

$$
-2 \sqrt{1-x}+\sin ^{-1} \sqrt{x}-\sqrt{x} \sqrt{1-x}
$$

(Notice that there is a slight mis-match of domains here. The domain of the integrand is $[0,1)$, while the domain of the function we obtained as the integral is $[0,1]$.)
(c)

$$
\int \frac{d x}{2+\tan x}
$$

Solution: Via the substitution $u=\tan x\left(\right.$ so $d u=\sec ^{2} x d x, d x=d u / \sec ^{2} x=$ $\left.d u /\left(1+\tan ^{2} x\right)=d u /\left(1+u^{2}\right)\right)$, we get

$$
\begin{aligned}
\int \frac{d x}{2+\tan x} & =\int \frac{d u}{\left(1+u^{2}\right)(2+u)} \\
& =\int \frac{A+B u}{1+u^{2}} d u+\int \frac{C}{2+u} d u \text { (form of partial fractions decomposition) } \\
& =\int \frac{2-u}{5\left(1+u^{2}\right)} d u+\int \frac{1}{5(2+u)} d u \text { (this after some algebra) } \\
& =\int \frac{2}{5\left(1+u^{2}\right)} d u-\int \frac{u}{5\left(1+u^{2}\right)} d u+\int \frac{1}{5(2+u)} \\
& =\frac{2}{5} \arctan u-\frac{1}{10} \log \left(1+u^{2}\right)+\frac{1}{5} \log |2+u| \\
& =\frac{2 x}{5}-\frac{1}{5} \log \sec x+\frac{1}{5} \log |2+\tan x|
\end{aligned}
$$

We could stand to be a little more careful here. When we make a substitution, it should be invertible. But $u=\tan x$ isn't invertible. So technically, we need to consider the problem separately on each of the domains

$$
\cdots,(-3 p i / 2,-\pi / 2),(-\pi / 2, \pi / 2),(\pi / 2,3 \pi / 2), \cdots
$$

(on each of which, \tan is invertible). On each such domain, everything goes exactly as before, until we come to simplify $\arctan u=\arctan \tan x$. We said this equal x; that is only true on the domain $(-\pi / 2, \pi / 2)$. On, for example, the domain $(3 \pi / 2,5 \pi / 2)$, we have

$$
\arctan \tan x=x-2 \pi
$$

(arctan returns a value between $-\pi / 2$ and $\pi / 2$, and $x-2 \pi$ is exactly the value in the interval $(-\pi / 2, \pi / 2)$ that has the same \tan value as $x)$. So on the domain $(3 \pi / 2,5 \pi / 2)$ we get a different antiderivative. But it differs from the one we got on $(-\pi / 2, \pi / 2)$ by a constant, namely $-4 \pi / 5$, so it really doesn't differ.
The same thing happens on all the open intervals that make up the domain of tan; so the antiderivative we found, works everywhere.
(d)

$$
\int \frac{x^{6}+x^{5}-2 x^{4}-x^{3}+8 x^{2}-4 x+5}{(x-1)^{2}(x+1)^{3}} d x
$$

Solution: Start with polynomial long division to get

$$
\frac{x^{6}+x^{5}-2 x^{4}-x^{3}+8 x^{2}-4 x+5}{(x-1)^{2}(x+1)^{3}}=x+\frac{x^{3}+7 x^{2}-5 x+5}{(x-1)^{2}(x+1)^{3}} .
$$

The form of the partial fractions decomposition of $\left(x^{3}+7 x^{2}-5 x+5\right) /\left((x-1)^{2}(x+1)^{3}\right)$ is

$$
\frac{x^{3}+7 x^{2}-5 x+5}{(x-1)^{2}(x+1)^{3}}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+1)}+\frac{D}{(x+1)^{2}}+\frac{E}{(x+1)^{3}} .
$$

After multiplying both sides above by $(x-1)^{2}(x+1)^{3}$, expanding out both sides, equating coefficients of same powers of x to get 5 equations in 5 unknowns, and solving, one gets $A=C=D=0, B=1, E=4$, i.e.

$$
\frac{x^{6}+x^{5}-2 x^{4}-x^{3}+8 x^{2}-4 x+5}{(x-1)^{2}(x+1)^{3}}=x+\frac{1}{(x-1)^{2}}+\frac{4}{x+1)^{3}} .
$$

So

$$
\int \frac{x^{6}+x^{5}-2 x^{4}-x^{3}+8 x^{2}-4 x+5}{(x-1)^{2}(x+1)^{3}} d x=\frac{x^{2}}{2}-\frac{1}{x-1}-\frac{2}{(x+1)^{2}} .
$$

(e)

$$
\int_{0}^{\pi}\left(f(x)+f^{\prime \prime}(x)\right) \sin x d x .
$$

(Here f is defined and twice differentiable on $[0, \pi]$, with $f^{\prime \prime}$ continuous. Your answer will depend on f, of course.)
Solution: Split into two integrals:

$$
\int_{0}^{\pi}\left(f(x)+f^{\prime \prime}(x)\right) \sin x d x=\int_{0}^{\pi} f(x) \sin x d x+\int_{0}^{\pi} f^{\prime \prime}(x) \sin x d x .
$$

Use integration by parts. For the first integral, use $u=f$ so $d u=f^{\prime}(x) d x$ and $d v=\sin x d x$ so $v=-\cos x$; for the second integral, use $u=\sin x$ so $d u=\cos x d x$ and $d v=f^{\prime \prime}(x) d x$ so $v=f^{\prime}(x)$ (here using continuity, so integrability, of $\left.f^{\prime \prime}\right)$. We get

$$
\int_{0}^{\pi} f(x) \sin x d x=[-f(x) \cos x]_{x=0}^{\pi}+\int_{0}^{\pi} f^{\prime}(x) \cos x d x=f(\pi)+f(0)+\int_{0}^{\pi} f^{\prime}(x) \cos x d x
$$ and

$$
\int_{0}^{\pi} f^{\prime \prime}(x) \sin x d x=\left[f^{\prime}(x) \sin x\right]_{x=0}^{\pi}-\int_{0}^{\pi} f^{\prime}(x) \cos x d x .
$$

Adding the two, the problem integral $\int_{0}^{\pi} f^{\prime}(x) \cos x d x$ disappears, leaving

$$
\int_{0}^{\pi}\left(f(x)+f^{\prime \prime}(x)\right) \sin x d x=f(\pi)+f(0)
$$

3. Recall that $\sinh x=\frac{e^{x}-e^{-x}}{2}$.
(a) Find the degree $2 n+1$ Taylor polynomial of sinh about 0 .

Solution: The k th derivative of $\left(e^{x}\right) / 2$ at 0 is $1 / 2$, and the k th derivative of $\left(e^{-x}\right) / 2$ at 0 is $(-1)^{k} / 2$. So the k th derivative of $\sinh x$ at 0 is

- 1 if k is odd,
- 0 if k is even.

We get

$$
P_{2 n+1,0, \sinh }(x)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{2 n+1}}{(2 n+1)!}
$$

(b) Write down the Lagrange form of the remainder term $R_{2 n+1,0, \sinh }(x)$.

Solution: Directly from Taylor's theorem,

$$
R_{2 n+1,0, \sinh }(x)=\frac{\sinh ^{(2 n+2)}(c) x^{2 n+2}}{(2 n+2)!}=\frac{\left(e^{c}-e^{-c}\right) x^{2 n+2}}{2(2 n+2)!}
$$

for some number c between 0 and x.
(c) Show that for all real x the remainder term $R_{2 n+1,0, \sinh }(x)$ tends to 0 as n tends to infinity.
Solution: Fix a real number x. The function $\sinh x$ is increasing on its domain (all reals), so

$$
\frac{\left(e^{c}-e^{-c}\right)}{2} \leq \max \left\{\frac{\left(e^{x}-e^{-x}\right)}{2}, \frac{\left(e^{0}-e^{-0}\right)}{2}(=0)\right\}
$$

So

$$
\left|\frac{\left(e^{c}-e^{-c}\right)}{2}\right| \leq\left|\frac{\left(e^{x}-e^{-x}\right)}{2}\right| .
$$

Whatever this is, it is just some constant C_{x} (depending on x). Thus we have

$$
\left|R_{2 n+1,0, \sinh }(x)\right| \leq C_{x} \frac{|x|^{2 n+2}}{(2 n+2)!}
$$

We have proven that for all $x>0, \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$, so

$$
\left|R_{2 n+1,0, \sinh }(x)\right| \rightarrow 0
$$

as $n \rightarrow \infty$, as required.
(d) Write down a sum (using summation notation), with all the summands being rational numbers, whose value is within 10^{-10} of $\sinh 5$.
Solution: From part (c) we have

$$
\left|R_{2 n+1,0, \sinh }(5)\right| \leq\left|\frac{\left(e^{5}-e^{-5}\right)}{2}\right| \frac{5^{2 n+2}}{(2 n+2)!}
$$

Using $e \leq 3$ we can write

$$
\left|R_{2 n+1,0, \sinh }(5)\right| \leq \frac{3^{5} 5^{2}}{2} \frac{25^{n}}{(2 n+2)!}
$$

This first drops below 10^{-10} at $n=15$, so the Taylor polynomial $P_{31,0, \text { sinh }}(x)$ at $x=5$ gives a number that is within 10^{-10} of $\sinh 5$. That is:

$$
\sum_{n=0}^{15} \frac{5^{2 n+1}}{(2 n+1)!}=(\sinh 5) \pm 10^{-10}
$$

4. Suppose that a_{i} is the coefficient of $(x-a)^{i}$ in the Taylor polynomial of $f(x)$ at a (so $\left.a_{i}=\frac{f^{(i)}(a)}{i!}\right)$ and that b_{i} is the coefficient of $(x-a)^{i}$ in the Taylor polynomial of $g(x)$ at a. In terms of the a_{i} 's and the b_{i} 's, express the coefficient of $(x-a)^{n}$ in the Taylor polynomial of each of the following functions at a :
(a) $2 f-3 g$

Solution: By linearity of the derivative, the nth derivative of $2 f-3 g$ at a is

$$
2 f^{(n)}(a)-3 g^{(n)}(a)
$$

so the coefficient of $(x-a)^{n}$ in the Taylor polynomial of $2 f-3 g$ at a is

$$
\frac{2 f^{(n)}(a)-3 g^{(n)}(a)}{n!}=2 a_{n}-3 b_{n} .
$$

(b) $f g$.

Solution: We proved last semester that

$$
(f g)^{(n)}(a)=\sum_{i=0}^{n}\binom{n}{i} f^{(i)}(a) g^{(n-i)}(a)
$$

so that

$$
\begin{aligned}
\frac{(f g)^{(n)}(a)}{n!} & =\sum_{i=0}^{n} \frac{\binom{n}{i} f^{(i)}(a) g^{(n-i)}(a)}{n!} \\
\sum_{i=0}^{n} \frac{\frac{n!}{i!(n-i)!} f^{(i)}(a) g^{(n-i)}(a)}{n!} & \\
& =\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} \frac{g^{(n-i)}(a)}{(n-i)!} \\
& =\sum_{i=0}^{n} a_{i} b_{n-i} .
\end{aligned}
$$

This is the coefficient of $(x-a)^{n}$ in the Taylor polynomial of $f g$ at a.
(c) $h(x)=\int_{a}^{x} f(t) d t$.

Solution: For $n=0$, have $h(a)=0$. For $n>0$,

$$
h^{(n)}(x)=f^{(n-1)}(x)
$$

so

$$
\frac{h^{(n)}(a)}{n!}=\frac{f^{(n-1)}(a)}{n!}=\frac{a_{n-1}}{n} .
$$

This is the coefficient of $(x-a)^{n}$ in the Taylor polynomial of h at a.
5. Compute the following sequence limits:
(a)

$$
\lim _{n \rightarrow \infty} \frac{a^{n}-b^{n}}{a^{n}+b^{n}} .
$$

(Here a, b are arbitrary real constants; you may have to treat cases.)
Solution: We deal with some boundary cases first.

- If $a=b=0$, none of the terms of the sequence is defined, and the limit doesn't exist.
- If $a=-b \neq 0$ then every second term of the sequence is undefined, and the limit doesn't exist.
- If $a=b \neq 0$, all terms are 0 and the limit is 0 .

We have dealt with the lines (in the $a-b$ plane) $a=b$ and $a=-b$. Removing those lines, the plane breaks into 4 connected regions:

- $a>0,|b|<a$. Here

$$
\frac{a^{n}-b^{n}}{a^{n}+b^{n}}=\frac{1-(b / a)^{n}}{1+(b / a)^{n}} \rightarrow \frac{1-0}{1+0}=1 \quad \text { as } n \rightarrow \infty
$$

- $a<0,|b|<a$. Here

$$
\frac{a^{n}-b^{n}}{a^{n}+b^{n}}=\frac{1-(b / a)^{n}}{1+(b / a)^{n}} \rightarrow \frac{1-0}{1+0}=1 \quad \text { as } n \rightarrow \infty
$$

- $b>0,|a|<b$. Here

$$
\frac{a^{n}-b^{n}}{a^{n}+b^{n}}=\frac{(a / b)^{n}-1}{(a / b)^{n}+1} \rightarrow \frac{0-1}{0+1}=-1 \quad \text { as } n \rightarrow \infty .
$$

- $b<0,|a|<b$. Here

$$
\frac{a^{n}-b^{n}}{a^{n}+b^{n}}=\frac{(a / b)^{n}-1}{(a / b)^{n}+1} \rightarrow \frac{0-1}{0+1}=-1 \quad \text { as } n \rightarrow \infty .
$$

This covers all possibilities.
(b)

$$
\lim _{n \rightarrow \infty}(n-\sqrt{n-a} \sqrt{n-b}) .
$$

(Again, a, b are arbitrary real constants; you may have to treat cases.)
Solution: Here cases should not be necessary.

$$
\begin{aligned}
n-\sqrt{n-a} \sqrt{n-b} & =\frac{(n-\sqrt{n-a} \sqrt{n-b})(n+\sqrt{n-a} \sqrt{n-b})}{n+\sqrt{n-a} \sqrt{n-b}} \\
& =\frac{n^{2}-(n-a)(n-b)}{n+\sqrt{n-a} \sqrt{n-b}} \\
& =\frac{(a+b) n-a b}{n+\sqrt{n-a} \sqrt{n-b}} \\
& =\frac{(a+b)-a b / n}{1+\sqrt{1-a / n} \sqrt{1-b / n}}
\end{aligned}
$$

The function

$$
x \mapsto \frac{(a+b)-x}{1+\sqrt{1-a x} \sqrt{1-b x}}
$$

is continuous at 0 , and takes value $(a+b) / 2$ there. Since $(1 / n) \rightarrow 0$ as $n \rightarrow \infty$, we conclude from the continuity theorem for sequences that

$$
\lim _{n \rightarrow \infty}(n-\sqrt{n-a} \sqrt{n-b})=\frac{a+b}{2}
$$

(and the argument was valid for all a, b).
6. Note: the common limit of the two sequences in this question is referred to as the arithmetric-geometric mean of a_{1}, b_{1}. It has a nice wikipedia page (google it).

Define two sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ recursively by $0<a_{1}<b_{1}$ (some arbitrary reals) and for $n \geq 1$

$$
a_{n+1}=\sqrt{a_{n} b_{n}}, \quad b_{n+1}=\frac{a_{n}+b_{n}}{2} .
$$

(a) Prove that $b_{n} \geq a_{n}$ for all $n \geq 1$.

Solution: For $n=1$, the claim is given. For $n>1$, using the dual recurrence,

$$
\begin{aligned}
b_{n} \geq a_{n} & \Longleftrightarrow \frac{a_{n-1}+b_{n-1}}{2} \geq \sqrt{a_{n-1} b_{n-1}} \\
& \Longleftrightarrow\left(a_{n-1}+b_{n-1}\right)^{2} \geq 4 a_{n-1} b_{n-1} \\
& \Longleftrightarrow a_{n-1}^{2}+2 a_{n-1} b_{n-1}+b_{n-1}^{2} \geq 4 a_{n-1} b_{n-1} \\
& \Longleftrightarrow a_{n-1}^{2}-2 a_{n-1} b_{n-1}+b_{n-1}^{2} \geq 0 \\
& \Longleftrightarrow\left(a_{n-1}-b_{n-1}\right)^{2} \geq 0,
\end{aligned}
$$

which is true.
(b) Prove that $\left(a_{n}\right)_{n=1}^{\infty}$ is non-decreasing.

Solution: For each $n \geq 1$,

$$
\begin{aligned}
a_{n+1} \geq a_{n} & \Longleftrightarrow \sqrt{a_{n} b_{n}} \geq a_{n} \\
& \Longleftrightarrow b_{n} \geq a_{n},
\end{aligned}
$$

which we have proven. So $\left(a_{n}\right)_{n=1}^{\infty}$ is non-decreasing.
(c) Prove that $\left(b_{n}\right)_{n=1}^{\infty}$ is non-increasing.

Solution: For each $n \geq 1$,

$$
\begin{aligned}
b_{n+1} \leq b_{n} & \Longleftrightarrow \frac{a_{n}+b_{n}}{2} \leq b_{n} \\
& \Longleftrightarrow a_{n} \leq b_{n},
\end{aligned}
$$

which we have proven. So $\left(b_{n}\right)_{n=1}^{\infty}$ is non-increasing.
(d) Explain why $\left(a_{n}\right)_{n=1}^{\infty},\left(b_{n}\right)_{n=1}^{\infty}$ both converge to finite limits.

Solution: First, $\left(b_{n}\right)_{n=1}^{\infty}$ is non-increasing, and bounded below by 0 , so converges to some limit, M say.
We have $a_{n} \leq b_{n} \leq b_{1}$, so $\left(a_{n}\right)_{n=1}^{\infty}$ is non-decreasing, and bounded above, by b_{1}; so it converges to some finite limit, L say.
(e) Show that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

Solution: We have $\left(a_{n} b_{n}\right) \rightarrow L M$ (by a basic limit theorem). Since the square root function is continuous at $L M$, it follows that $\left(\sqrt{a_{n} b_{n}}\right) \rightarrow \sqrt{L M}$. But $\left(\sqrt{a_{n} b_{n}}\right)=$ $\left(a_{n+1}\right) \rightarrow L$. So $L=\sqrt{L M}$, and $L=M$.

