
Math 10860, Honors Calculus 2

Midterm 2 practice problem solutions

Spring 2020

1. Let

In =

∫
xn sinx dx.

(a) Find I0 and I1.

Solution: I0 =
∫

sinx dx = −cosx, while (via integration by parts)

I1 =

∫
x sinx dx = −x cosx+

∫
cosx dx = −x cosx+ sinx.

(b) Find a reduction formula that expresses In+2 in terms of In for n ≥ 0.

Solution: We have, doing integration by parts twice,

In+2 =

∫
xn+2 sinx dx

= −xn+2 cosx+ (n+ 2)

∫
xn+1 cosx dx

= −xn+2 cosx+ (n+ 2)

[
xn+1 sinx− (n+ 1)

∫
xn sinx dx

]
= −xn+2 cosx+ (n+ 2)xn+1 sinx− (n+ 2)(n+ 1)In

(c) Find
∫
x5 sinx dx.

Solution: ∫
x5 sinx dx = I5

= −x5 cosx+ 5x4 sinx− 20I3.

Since

I3 = −x3 cosx+ 3x2 sinx− 6I1

= −x3 cosx+ 3x2 sinx+ 6x cosx− 6 sinx

we get∫
x5 sinx dx = −x5 cosx+5x4 sinx+20x3 cosx−60x2 sinx−120x cosx+120 sinx.
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2. Find the following integrals:

(a) ∫
log3 x dx.

Solution: One approach is parts, with dv = dx and u = log3 x, so v = x and
du = (3 log2 x)/x dx, leading to∫

log3 x dx = x log3 x− 3

∫
log2 x dx.

Now again we use parts, with dv = dx and u = log2 x, so v = x and du =
(2 log x)/x dx, leading to∫

log3 x dx = x log3 x− 3x log2 x+ 6

∫
log x dx.

Finally, use parts again, with dv = dx and u = log x, so v = x and du = 1/x dx,
leading to ∫

log3 x dx = x log3 x− 3x log2 x+ 6x log x− 6x.

(b) ∫ √
1− x

1−
√
x
dx.

Solution: Start with u =
√
x, so du = (1/2

√
x)dx = (1/2u)dx, so dx = 2u du.

Also 1− x = 1− u2, so integral becomes

2

∫
u
√

1− u2
1− u

du.

Now try u = sin t, so du = cos t dt, to get

2

∫
sin t cos2 t

1− sin t
dt = 2

∫
sin t(1− sin t)(1 + sin t)

1− sin t
dt = 2

∫ (
sin t+ sin2 t

)
dt

The value of this last is −2 cos t+ t− sin 2t
2

= −2 cos t+ t− sin t cos t. Going back
to u, get

−2 cos(sin−1 u) + sin−1 u− u cos(sin−1 u) = −2
√

1− u2 + sin−1 u− u
√

1− u2.

Going back to x, get

−2
√

1− x+ sin−1
√
x−
√
x
√

1− x.

(Notice that there is a slight mis-match of domains here. The domain of the
integrand is [0, 1), while the domain of the function we obtained as the integral is
[0, 1].)
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(c) ∫
dx

2 + tan x
.

Solution: Via the substitution u = tanx (so du = sec2 x dx, dx = du/ sec2 x =
du/(1 + tan2 x) = du/(1 + u2)), we get∫

dx

2 + tan x
=

∫
du

(1 + u2)(2 + u)

=

∫
A+Bu

1 + u2
du+

∫
C

2 + u
du (form of partial fractions decomposition)

=

∫
2− u

5(1 + u2)
du+

∫
1

5(2 + u)
du (this after some algebra)

=

∫
2

5(1 + u2)
du−

∫
u

5(1 + u2)
du+

∫
1

5(2 + u)

=
2

5
arctanu− 1

10
log(1 + u2) +

1

5
log |2 + u|

=
2x

5
− 1

5
log secx+

1

5
log |2 + tan x|.

We could stand to be a little more careful here. When we make a substitution,
it should be invertible. But u = tanx isn’t invertible. So technically, we need to
consider the problem separately on each of the domains

· · · , (−3pi/2,−π/2), (−π/2, π/2), (π/2, 3π/2), · · ·

(on each of which, tan is invertible). On each such domain, everything goes exactly
as before, until we come to simplify arctanu = arctan tan x. We said this equal
x; that is only true on the domain (−π/2, π/2). On, for example, the domain
(3π/2, 5π/2), we have

arctan tan x = x− 2π

(arctan returns a value between −π/2 and π/2, and x− 2π is exactly the value
in the interval (−π/2, π/2) that has the same tan value as x). So on the domain
(3π/2, 5π/2) we get a different antiderivative. But it differs from the one we got
on (−π/2, π/2) by a constant, namely −4π/5, so it really doesn’t differ.

The same thing happens on all the open intervals that make up the domain of
tan; so the antiderivative we found, works everywhere.

(d) ∫
x6 + x5 − 2x4 − x3 + 8x2 − 4x+ 5

(x− 1)2(x+ 1)3
dx.

Solution: Start with polynomial long division to get

x6 + x5 − 2x4 − x3 + 8x2 − 4x+ 5

(x− 1)2(x+ 1)3
= x+

x3 + 7x2 − 5x+ 5

(x− 1)2(x+ 1)3
.
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The form of the partial fractions decomposition of (x3+7x2−5x+5)/((x−1)2(x+1)3)
is

x3 + 7x2 − 5x+ 5

(x− 1)2(x+ 1)3
=

A

(x− 1)
+

B

(x− 1)2
+

C

(x+ 1)
+

D

(x+ 1)2
+

E

(x+ 1)3
.

After multiplying both sides above by (x− 1)2(x+ 1)3, expanding out both sides,
equating coefficients of same powers of x to get 5 equations in 5 unknowns, and
solving, one gets A = C = D = 0, B = 1, E = 4, i.e.

x6 + x5 − 2x4 − x3 + 8x2 − 4x+ 5

(x− 1)2(x+ 1)3
= x+

1

(x− 1)2
+

4

x+ 1)3
.

So ∫
x6 + x5 − 2x4 − x3 + 8x2 − 4x+ 5

(x− 1)2(x+ 1)3
dx =

x2

2
− 1

x− 1
− 2

(x+ 1)2
.

(e) ∫ π

0

(f(x) + f ′′(x)) sinx dx.

(Here f is defined and twice differentiable on [0, π], with f ′′ continuous. Your
answer will depend on f , of course.)

Solution: Split into two integrals:∫ π

0

(f(x) + f ′′(x)) sinx dx =

∫ π

0

f(x) sinx dx+

∫ π

0

f ′′(x) sinx dx.

Use integration by parts. For the first integral, use u = f so du = f ′(x)dx and
dv = sinxdx so v = − cosx; for the second integral, use u = sinx so du = cosxdx
and dv = f ′′(x)dx so v = f ′(x) (here using continuity, so integrability, of f ′′). We
get∫ π

0

f(x) sinx dx = [−f(x) cosx]πx=0+

∫ π

0

f ′(x) cosx dx = f(π)+f(0)+

∫ π

0

f ′(x) cosxdx

and ∫ π

0

f ′′(x) sinx dx = [f ′(x) sinx]πx=0 −
∫ π

0

f ′(x) cosx dx.

Adding the two, the problem integral
∫ π
0
f ′(x) cosx dx disappears, leaving∫ π

0

(f(x) + f ′′(x)) sinx dx = f(π) + f(0).

3. Recall that sinhx = ex−e−x

2
.

(a) Find the degree 2n+ 1 Taylor polynomial of sinh about 0.

Solution: The kth derivative of (ex)/2 at 0 is 1/2, and the kth derivative of
(e−x)/2 at 0 is (−1)k/2. So the kth derivative of sinhx at 0 is
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• 1 if k is odd,

• 0 if k is even.

We get

P2n+1,0,sinh(x) = x+
x3

3!
+
x5

5!
+ · · ·+ x2n+1

(2n+ 1)!
.

(b) Write down the Lagrange form of the remainder term R2n+1,0,sinh(x).

Solution: Directly from Taylor’s theorem,

R2n+1,0,sinh(x) =
sinh(2n+2)(c)x2n+2

(2n+ 2)!
=

(ec − e−c)x2n+2

2(2n+ 2)!

for some number c between 0 and x.

(c) Show that for all real x the remainder term R2n+1,0,sinh(x) tends to 0 as n tends
to infinity.

Solution: Fix a real number x. The function sinhx is increasing on its domain
(all reals), so

(ec − e−c)
2

≤ max

{
(ex − e−x)

2
,
(e0 − e−0)

2
(= 0)

}
.

So ∣∣∣∣(ec − e−c)2

∣∣∣∣ ≤ ∣∣∣∣(ex − e−x)2

∣∣∣∣ .
Whatever this is, it is just some constant Cx (depending on x). Thus we have

|R2n+1,0,sinh(x)| ≤ Cx
|x|2n+2

(2n+ 2)!
.

We have proven that for all x > 0, limn→∞
xn

n!
= 0, so

|R2n+1,0,sinh(x)| → 0

as n→∞, as required.

(d) Write down a sum (using summation notation), with all the summands being
rational numbers, whose value is within 10−10 of sinh 5.

Solution: From part (c) we have

|R2n+1,0,sinh(5)| ≤
∣∣∣∣(e5 − e−5)2

∣∣∣∣ 52n+2

(2n+ 2)!

Using e ≤ 3 we can write

|R2n+1,0,sinh(5)| ≤ 3552

2

25n

(2n+ 2)!
.

This first drops below 10−10 at n = 15, so the Taylor polynomial P31,0,sinh(x) at
x = 5 gives a number that is within 10−10 of sinh 5. That is:

15∑
n=0

52n+1

(2n+ 1)!
= (sinh 5)± 10−10.
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4. Suppose that ai is the coefficient of (x− a)i in the Taylor polynomial of f(x) at a (so

ai = f (i)(a)
i!

) and that bi is the coefficient of (x− a)i in the Taylor polynomial of g(x)
at a. In terms of the ai’s and the bi’s, express the coefficient of (x− a)n in the Taylor
polynomial of each of the following functions at a:

(a) 2f − 3g

Solution: By linearity of the derivative, the nth derivative of 2f − 3g at a is

2f (n)(a)− 3g(n)(a),

so the coefficient of (x− a)n in the Taylor polynomial of 2f − 3g at a is

2f (n)(a)− 3g(n)(a)

n!
= 2an − 3bn.

(b) fg.

Solution: We proved last semester that

(fg)(n)(a) =
n∑
i=0

(
n

i

)
f (i)(a)g(n−i)(a)

so that

(fg)(n)(a)

n!
=

n∑
i=0

(
n
i

)
f (i)(a)g(n−i)(a)

n!

n∑
i=0

n!
i!(n−i)!f

(i)(a)g(n−i)(a)

n!

=
n∑
i=0

f (i)(a)

i!

g(n−i)(a)

(n− i)!

=
n∑
i=0

aibn−i.

This is the coefficient of (x− a)n in the Taylor polynomial of fg at a.

(c) h(x) =
∫ x
a
f(t) dt.

Solution: For n = 0, have h(a) = 0. For n > 0,

h(n)(x) = f (n−1)(x)

so
h(n)(a)

n!
=
f (n−1)(a)

n!
=
an−1
n

.

This is the coefficient of (x− a)n in the Taylor polynomial of h at a.

5. Compute the following sequence limits:
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(a)

lim
n→∞

an − bn

an + bn
.

(Here a, b are arbitrary real constants; you may have to treat cases.)

Solution: We deal with some boundary cases first.

• If a = b = 0, none of the terms of the sequence is defined, and the limit doesn’t
exist.

• If a = −b 6= 0 then every second term of the sequence is undefined, and the
limit doesn’t exist.

• If a = b 6= 0, all terms are 0 and the limit is 0.

We have dealt with the lines (in the a-b plane) a = b and a = −b. Removing those
lines, the plane breaks into 4 connected regions:

• a > 0, |b| < a. Here

an − bn

an + bn
=

1− (b/a)n

1 + (b/a)n
→ 1− 0

1 + 0
= 1 as n→∞.

• a < 0, |b| < a. Here

an − bn

an + bn
=

1− (b/a)n

1 + (b/a)n
→ 1− 0

1 + 0
= 1 as n→∞.

• b > 0, |a| < b. Here

an − bn

an + bn
=

(a/b)n − 1

(a/b)n + 1
→ 0− 1

0 + 1
= −1 as n→∞.

• b < 0, |a| < b. Here

an − bn

an + bn
=

(a/b)n − 1

(a/b)n + 1
→ 0− 1

0 + 1
= −1 as n→∞.

This covers all possibilities.

(b)
lim
n→∞

(n−
√
n− a

√
n− b).

(Again, a, b are arbitrary real constants; you may have to treat cases.)

Solution: Here cases should not be necessary.

n−
√
n− a

√
n− b =

(n−
√
n− a

√
n− b)(n+

√
n− a

√
n− b)

n+
√
n− a

√
n− b

=
n2 − (n− a)(n− b)
n+
√
n− a

√
n− b

=
(a+ b)n− ab

n+
√
n− a

√
n− b

=
(a+ b)− ab/n

1 +
√

1− a/n
√

1− b/n
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The function

x 7→ (a+ b)− x
1 +
√

1− ax
√

1− bx
is continuous at 0, and takes value (a+ b)/2 there. Since (1/n)→ 0 as n→∞,
we conclude from the continuity theorem for sequences that

lim
n→∞

(n−
√
n− a

√
n− b) =

a+ b

2

(and the argument was valid for all a, b).

6. Note: the common limit of the two sequences in this question is referred to as the
arithmetric-geometric mean of a1, b1. It has a nice wikipedia page (google it).

Define two sequences (an)∞n=1 and (bn)∞n=1 recursively by 0 < a1 < b1 (some arbitrary
reals) and for n ≥ 1

an+1 =
√
anbn, bn+1 =

an + bn
2

.

(a) Prove that bn ≥ an for all n ≥ 1.

Solution: For n = 1, the claim is given. For n > 1, using the dual recurrence,

bn ≥ an ⇐⇒ an−1 + bn−1
2

≥
√
an−1bn−1

⇐⇒ (an−1 + bn−1)
2 ≥ 4an−1bn−1

⇐⇒ a2n−1 + 2an−1bn−1 + b2n−1 ≥ 4an−1bn−1

⇐⇒ a2n−1 − 2an−1bn−1 + b2n−1 ≥ 0

⇐⇒ (an−1 − bn−1)2 ≥ 0,

which is true.

(b) Prove that (an)∞n=1 is non-decreasing.

Solution: For each n ≥ 1,

an+1 ≥ an ⇐⇒
√
anbn ≥ an

⇐⇒ bn ≥ an,

which we have proven. So (an)∞n=1 is non-decreasing.

(c) Prove that (bn)∞n=1 is non-increasing.

Solution: For each n ≥ 1,

bn+1 ≤ bn ⇐⇒ an + bn
2

≤ bn

⇐⇒ an ≤ bn,

which we have proven. So (bn)∞n=1 is non-increasing.
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(d) Explain why (an)∞n=1, (bn)∞n=1 both converge to finite limits.

Solution: First, (bn)∞n=1 is non-increasing, and bounded below by 0, so converges
to some limit, M say.

We have an ≤ bn ≤ b1, so (an)∞n=1 is non-decreasing, and bounded above, by b1; so
it converges to some finite limit, L say.

(e) Show that limn→∞ an = limn→∞ bn.

Solution: We have (anbn)→ LM (by a basic limit theorem). Since the square root
function is continuous at LM , it follows that (

√
anbn)→

√
LM . But (

√
anbn) =

(an+1)→ L. So L =
√
LM , and L = M .
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